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0.1 Abstract

We review higher-dimensional unified theories from the general relativity, rather than the particle
physics side. Three distinct approaches to the subject are identified and contrasted: compactified,
projective and noncompactified. We discuss the cosmological and astrophysical implications of extra
dimensions, and conclude that none of the three approaches can be ruled out on observational grounds
at the present time.

1 Introduction

Kaluza’s [1] achievement was to show that five-dimensional general relativity contains both Einstein’s
four-dimensional theory of gravity and Maxwell’s theory of electromagnetism. He however imposed
a somewhat artificial restriction (the cylinder condition) on the coordinates, essentially barring the
fifth one a priori from making a direct appearance in the laws of physics. Klein’s [2] contribution was
to make this restriction less artificial by suggesting a plausible physical basis for it in compactification
of the fifth dimension. This idea was enthusiastically received by unified-field theorists, and when
the time came to include the strong and weak forces by extending Kaluza’s mechanism to higher
dimensions, it was assumed that these too would be compact. This line of thinking has led through
eleven-dimensional supergravity theories in the 1980s to the current favorite contenders for a possible
“theory of everything,” ten-dimensional superstrings.

We review the field of Kaluza-Klein gravity, concentrating on the general relativity, rather than
particle physics side of the subject. (For the latter there are already many excellent books [3]-[8] and
review articles [9]-[14] available.) We also aim to re-examine the field to some extent, as it seems
to us that the cart of compactification has in some ways gotten ahead of the horse of unification.
Kaluza unified not only gravity and electromagnetism, but also matter and geometry, for the photon
appeared in four dimensions as a manifestation of empty five-dimensional spacetime. Modern Kaluza-
Klein theories, by contrast, routinely require the addition of explicit “higher-dimensional matter”
fields in order to achieve successful compactification (among other things). Are they necessary? Yes,
if extra coordinates must be real, lengthlike and compact. There are, however, higher-dimensional
unified field theories which require none of these things: projective theories [15]-[18], in which extra
coordinates are not physically real; and noncompactified theories [19]-[26], in which they are not
necessarily lengthlike or compact. These theories receive special attention in our report.

We begin in §2 with a historical overview of higher-dimensional theories of gravity. In §3 we
review Kaluza’s original mechanism, emphasizing what to us are its three principal features. The
three main approaches to higher-dimensional unification since Kaluza - compactified, projective and



noncompactified - are reviewed in §4, §5 and §6 respectively. We note that each one modifies or
sacrifices at least one of the key features of Kaluza’s theory, and discuss the implications. The all-
important question of experimental constraints is addressed in §7 and §8, which deal respectively
with cosmological and astrophysical effects of extra dimensions. None of the three above-mentioned
approaches can be ruled out on observational grounds at the present time. Conclusions and prospects
for further work are summarized in §9.

2 Historical Overview

2.1 Higher Dimensions

The world of everyday experience is three-dimensional. But why should this be so? The question
goes back at least to Kepler [27], who speculated that the threefold nature of the Holy Trinity might
be responsible. More recent arguments have involved the stability of planetary orbits and atomic
ground states, the use of wave propagation for information transmission, the fundamental constants
of nature, and the anthropic principle [28], as well as wormhole effects [29], the cosmological constant
[30], certain “geometry-free” considerations [31], string theories [32], and nucleation probabilities in
quantum cosmology [33]. All these lines of reasoning converge on the same conclusion: that, in
agreement with common intuition, space is composed of three macroscopic spatial dimensions z', 2°
and 3.

Nevertheless, the temptation to tinker with the dimensionality of nature has proved irresistible
to physicists over the years. The main reason for this is that phenomena which require very dif-
ferent explanations in three-dimensional space can often be shown to be manifestations of simpler
theories in higher-dimensional manifolds. But how can this idea be reconciled with the observed
three-dimensionality of space? If there are additional coordinates, why does physics appear to be
independent of them?

It is useful to keep in mind that the new coordinates need not necessarily be lengthlike (in the
sense of being measured in meters, say), or even spacelike (in regard to their metric signature). A
concrete example which violates both of these expectations was introduced in 1909 by Minkowski
[34], who showed that the successes of Maxwell’s unified electromagnetic theory and Einstein’s special
relativity could be understood geometrically if time, along with space, were considered part of a
four-dimensional spacetime manifold via 2° = ict. Many of the abovementioned arguments against
more than three dimensions were circumvented by the fact that the fourth coordinate did not mark
distance. And the reason that physics had appeared three-dimensional for so long was because of the
large size of the dimension-transposing parameter ¢, which meant that the effects of “mixing” space
and time coordinates (ie., length contraction, time dilation) appeared only at very high speeds.

2.2 Kaluza-Klein Theory

Inspired by the close ties between Minkowski’s four-dimensional spacetime and Maxwell’s unification
of electricity and magnetism, Nordstrom [35] in 1914 and (independently) Kaluza [1] in 1921 were
the first to try unifying gravity with electromagnetism in a theory of five dimensions (z° through
z'). Both men then faced the question: why had no fifth dimension been observed in nature? In
Minkowski’s time, there had already been experimental phenomena (namely, electromagnetic ones)
whose invariance with respect to Lorentz transformations could be interpreted as four-dimensional
coordinate invariance. No such observations pointed to a fifth dimension. Nordstrom and Kaluza
therefore avoided the question and simply demanded that all derivatives with respect to z? vanish.
In other words, physics was to take place - for as-yet unknown reasons - on a four-dimensional



hypersurface in a five-dimensional universe (Kaluza’s “cylinder condition”).

With this assumption, each was successful in obtaining the field equations of both electromag-
netism and gravity from a single five-dimensional theory. Nordstrom, working as he was before general
relativity, assumed a scalar gravitational potential; while Kaluza used Einstein’s tensor potential.
Specifically, Kaluza demonstrated that general relativity, when interpreted as a five-dimensional the-
ory in vacuum (ie., G5 = 0, with A, B running over 0, 1, 2, 3, 4), contained four-dimensional
general relativity in the presence of an electromagnetic field (ie., *G,5 =* TfﬁM, with «, § running
over 0, 1, 2, 3), together with Maxwell’s laws of electromagnetism. (There was also a Klein-Gordon
equation for a massless scalar field, but this was not appreciated - and was in fact suppressed - by
Kaluza at the time.) All subsequent attempts at higher-dimensional unification spring from this
remarkable result.

Various modifications of Kaluza’s five-dimensional scheme, including Klein’s idea [2], [36] of com-
pactifying the extra dimension (which we will discuss in a moment) were suggested by Einstein,
Jordan, Bergmann, and a few others [37]-[43] over the years, but it was not extended to more than
five dimensions until theories of the strong and weak nuclear interactions were developed. The ob-
vious question was whether these new forces could be unified with gravity and electromagnetism by
the same method.

The key to achieving this lay in the concept of gauge invariance, which was coming to be recognized
as underlying all the interactions of physics. Electrodynamics, for example, could be “derived”
by imposing local U(1) gauge-invariance on a free-particle Lagrangian. From the gauge-invariant
point of view, Kaluza’s feat in extracting electromagnetism from five-dimensional gravity was no
longer so surprising: it worked, in effect, because U(1) gauge-invariance had been “added onto”
Einstein’s equations in the guise of invariance with respect to coordinate transformations along the
fifth dimension. In other words, gauge symmetry had been “explained” as a geometric symmetry of
spacetime. The electromagnetic field then appeared as a vector “gauge field” in four dimensions. It
was natural - though not simple - to extend this insight to groups with more complicated symmetry.
De Witt [44] in 1963 was the first to suggest incorporating the non-Abelian SU(2) gauge group
of Yang and Mills into a Kaluza-Klein theory of (4 + d) dimensions. A minimum of three extra
dimensions were required. This problem was picked up by others [45]-[47] and solved completely by
the time of Cho & Freund [48], [49] in 1975.

2.3 Approaches to Higher-Dimensional Unification

We emphasize here three key features of all the models discussed so far:

(i) They embody Einstein’s vision [50]-[52] of nature as pure geometry. (This idea can be traced in
nonmathematical form at least to Clifford in 1876 [53], and there are hints of it as far back as the
Indian Vedas, according to Wheeler and others [54].) The electromagnetic and Yang-Mills fields, as
well as the gravitational field, are completely contained in the higher-dimensional Einstein tensor
(4+d) 7 4 g; that is, in the metric and its derivatives. No explicit energy-momentum tensor *97T, is
needed.

(ii) They are minimal extensions of general relativity in the sense that there is no modification to
the mathematical structure of Einstein’s theory. The only change is that tensor indices run over 0
to (3 + d) instead of 0 to 3.

(iii) They are a priori cylindrical. No mechanism is suggested to explain why physics depends on the
first four coordinates, but not on the extra ones.

The first two of these are agreeable from the point of view of elegance and simplicity. The third,
however, appears contrived to modern eyes. In the effort to repair this defect, higher-dimensional
unified theory has evolved in three more or less independent directions since the time of Kaluza.



Each one sacrifices or modifies one of the features (i) to (iii) above.

Firstly, it has been proposed that extra dimensions do not appear in physics because they are
compactified and unobservable on experimentally accessible energy scales. This approach has been
successful in many ways, and is the dominant paradigm in higher-dimensional unification (recent
reviews include many excellent books [3]-[8] and articles [9]-[14]). If one wants to unify more than
just gravity and electromagnetism in this way, however, it seems that one has in practice to abandon
Einstein’s goal of geometrizing physics, at least in the sense of (i) above.

A second way to sweep the extra dimensions out of sight is to regard them as mathematical artifacts
of a more complicated underlying theory, sacrificing (ii) above. This can be done, for example, if
one replaces the classical (affine) geometry underlying Einstein’s general relativity with projective
geometry (see for reviews [15]-[18]). “Extra dimensions” then become visual aids which may or
may not help us understand the underlying mathematics of nature, but which do not correspond to
physical coordinates.

The third approach to the problem of explaining exact cylindricity is to consider the possibility that
it may not necessarily be exact, relaxing (iii) above. That is, one takes the new coordinates at face
value, allowing physics to depend on them in principle [19]-[26]. This dependence presumably appears
in regimes that have not yet been well-probed by experiment - much as the relevance of Minkowski’s
fourth dimension to mechanics was not apparent at non-relativistic speeds. When dependence on
the extra dimensions is included, one finds that the five-dimensional Einstein equations Rz = 0
contain the four-dimensional ones *G,5 =* T,5 with a general energy-momentum tensor *7T, 4 instead
of just the electromagnetic one 4T£3M.

2.4 The Compactified Approach

Klein showed in 1926 [2], [36] that Kaluza’s cylinder condition would arise naturally if the fifth coor-
dinate had (1) a circular topology, in which case physical fields would depend on it only periodically,
and could be Fourier-expanded; and (2) a small enough (“compactified”) scale, in which case the
energies of all Fourier modes above the ground state could be made so high as to be unobservable
(except - as we now add - possibly in the very early universe). Physics would thus be effectively in-
dependent of Kaluza’s fifth dimension, as desired. As a bonus, it seemed early on that the expansion
of the electromagnetic field into Fourier modes could in principle explain the quantization of electric
charge. (This aspect of the theory has had to be abandoned, however, as the charge-to-mass ratio of
the higher modes did not match that of any known particles. Nowadays elementary charges are iden-
tified with the ground state Fourier modes only, and their small mass is attributed to spontaneous
symmetry-breaking.)

The scheme was not perfect; one still needed to explain why extra dimensions differed so markedly
in topology and scale from the familiar spacetime ones. Their size in particular had to be extremely
small (below the attometer (lam = 10~'®m) scale, according to current experiment [55]). There was
also the question of how to interpret a new scalar field which appeared in the theory. These difficulties
have, however, proved manageable. Scalar fields are not as threatening as they once appeared; one
now just assumes that they are too massive to have been observed. And an entire industry has grown
up around the study of compactification mechanisms and the topology of compact spaces.

In fact, Klein’s strategy of compactifying extra dimensions has come to dominate higher-dimensional
unified physics, leading in recent years to new fields like eleven-dimensional supergravity and ten-
dimensional superstring theory. We will survey these developments in this section, and make contact
with many of them throughout this report, but it is not our purpose to review them exhaustively.
For this the reader is directed to the books [3]-[8], and review articles [9]-[14] mentioned already.
Our goal here is to take a broad view, comparing and contrasting the various approaches to higher-



dimensional gravity, and focusing in particular on those which have received less critical attention in
the literature. A semantic note: while the term “Kaluza-Klein theory” ought, strictly speaking, to
apply only to models which assume both cylindricity and compactified dimensions, we follow popu-
lar usage and apply the term to any higher-dimensional unified theory of gravity in which the extra
dimensions are regarded as real, whether compactified or not. When distinguishing between these
two, we will refer in the latter case to “noncompactified Kaluza-Klein theories,” though this is to
some extent a contradiction in terms.

2.5 Compactification Mechanisms

A difficulty with compactification is that one cannot impose it indiscriminately on whichever dimen-
sions one likes - the combination of macroscopic four-dimensional spacetime plus the compactified
extra-dimensional space must be a solution of the higher-dimensional Einstein field equations. In
particular, one should be able to recover a “ground state” solution consisting of four-dimensional
Minkowski space plus a d-dimensional compact manifold. Although this is straightforward when
d = 1 (Klein’s case), the same thing is not true in higher-dimensional theories like that of Cho &
Freund, where the compact spaces are in general curved [7], [56]-[59]. The consequences of ignoring
this inconsistency in “Kaluza-Klein ansatz” have been emphasized by Duff et al. [11], [12], [14], [60].
This and related problems have even led Cho [61]-[64] to call for the abandonment of Klein’s “zero
modes approximation” as a means of dimensional reduction.

In general, however, spacetime can still be coaxed into compactifying in the desired manner - at
the cost of altering the higher-dimensional vacuum Einstein equations, either by incorporating torsion
[65]-[68], adding higher-derivative terms (eg., R?) onto the Einstein action [69], or - last but not least
- adding an explicit higher-dimensional energy-momentum tensor to the theory. If chosen judiciously,
this last will induce “spontaneous compactification” of the extra dimensions, as first demonstrated
by Cremmer & Scherk [70], [71]. This approach, though, sacrifices Einstein and Kaluza’s dream
[50]-[54] of a purely geometrical unified theory of nature. Rather than explaining the “base wood”
of four-dimensional matter and forces as manifestations of the “pure marble” of geometry in higher
dimensions, one has essentially been driven to invent new kinds of wood. Weinberg [72] has likened
this situation to the fable of “stone soup,” in which a miraculous stew, allegedly made out of rocks,
turns out on deeper investigation to be made from rocks plus various kinds of vegetables, meat and
spices.

In spite of this aesthetic drawback, however, the idea of spontaneous compactification gained
rapid acceptance [73]-[78] and has become the standard way to reconcile extra dimensions with
the observed four-dimensionality of spacetime in Kaluza-Klein theory (see Bailin & Love [13] for
a review). An important variation is that of Candelas & Weinberg [79], [80], who showed that
the quantum Casimir energy of massless higher-dimensional fields, when combined with a higher-
dimensional cosmological constant, can also compactify the extra dimensions in a satisfactory way.
Unfortunately, some 10* — 10° matter fields are required.

2.6 D = 11 Supergravity

One way to make the addition “by hand” of extra matter fields more natural was to make the theory
supersymmetric (ie., to match up every boson with an as-yet undetected fermionic “superpartner” and
vice versa). The reason for this is that the (compactified) Kaluza-Klein programme of “explaining”
gauge symmetries as (restricted) higher-dimensional spacetime symmetries can only give rise to four-
dimensional gauge bosons. If the theory is to include fermionic fields, as required by supersymmetry,
then these fields at least must be put in by hand. (This limitation may not necessarily apply
to noncompactified Kaluza-Klein theories, in which the modest dependence on extra coordinates -



subject to experimental constraints - gives the Einstein equations a rich enough structure that matter
of a very general kind can be “induced” in the four-dimensional universe by pure geometry in higher
dimensions. In five dimensions, for example, one can obtain not only photons, the gauge bosons of
electromagnetism, but also dustlike, vacuum, or “stiff” matter.)

Supersymmetric gravity (“supergravity”) began life as a four-dimensional theory in 1976 [81], [82],
but quickly made the jump to higher dimensions (“Kaluza-Klein supergravity”). It was particularly
successful in D = 11, for three principal reasons. First, Nahm [83] showed that eleven was the
maximum number of dimensions consistent with a single graviton (and an upper limit of two on
particle spin). This was followed by Witten’s proof [84] that eleven was also the minimum number
of dimensions required for a Kaluza-Klein theory to unify all the forces in the standard model of
particle physics (ie., to contain the gauge groups of the strong (SU(3)) and electroweak (SU(2) x
U(1)) interactions). The combination of supersymmetry with Kaluza-Klein theory thus appeared
to uniquely fix the dimensionality of spacetime. Secondly, whereas in lower dimensions one had to
choose between several possible configurations for the extra matter fields, Cremmer, Julia & Scherk
[85] demonstrated in 1978 that in D = 11 exactly one choice was consistent with the requirements of
supersymmetry (in particular, that there be equal numbers of Bose and Fermi degrees of freedom).
In other words, while a higher-dimensional energy-momentum tensor was still required, its form at
least appeared less contrived. Finally, Freund & Rubin [86] showed in 1980 that compactification of
the D = 11 model could occur in only two ways: to seven or four compact dimensions, leaving four
(or seven, respectively) macroscopic ones. Not only did eleven-dimensional spacetime appear to be
uniquely favoured for unification, but it also split perfectly to produce the observed four-dimensional
world. (The other possibility, of a macroscopic seven-dimensional world, could unfortunately not be
ruled out, and in fact at least one such model was explicitly constructed as well [87].) Buoyed by these
successes, eleven-dimensional supergravity appeared set by the mid 1980s as a leading candidate for
the hoped-for “theory of everything” (see [8], [12], [88] for reviews, and [89] for an extensive collection
of papers. A nontechnical introduction is given in [90].)

A number of blemishes, however - one aesthetic and three more practical - have dampened this
initial enthusiasm. Firstly, the compact manifolds originally envisioned by Witten [84] (those contain-
ing the standard model) turned out not to generate quarks or leptons, and to be incompatible with
supersymmetry [8], [13]. Their most successful replacements are the 7-sphere and the “squashed” 7-
sphere [12], described respectively by the symmetry groups SO(8) and SO(5) x SU(2). These groups,
however, unfortunately do not contain the minimum symmetry requirements of the standard model
(SU(3) x SU(2) x U(1)). This is commonly rectified by adding more matter fields, the “composite
gauge fields” [91], to the eleven-dimensional Lagrangian. Secondly, it is very difficult to build chiral-
ity (necessary for a realistic fermion model) into an eleven-dimensional theory [84], [92]. A variety of
remedies have been proposed for this, including the ubiquitous additional higher-dimensional gauge
fields [73], [77], noncompact internal manifolds [93]-[99], and extensions of Riemannian geometry
[100]-[102]. Thirdly, D = 11 supergravity theory is marred by a large cosmological constant in four
dimensions, which is difficult to remove, even by fine-tuning [7], [8]. Finally, quantization of the
theory leads inevitably to anomalies [89].

Some of these difficulties can be eased by descending to ten dimensions: chirality is easier to obtain
[92], and many of the anomalies disappear [103]. However, the introduction of chiral fermions leads
to new kinds of anomalies. And the primary benefit of the D = 11 theory - its uniqueness - is lost,
since ten dimensions are not specially favoured, and the higher-energy theory does not break down
naturally into four macroscopic and six compact dimensions. (One can still find solutions in which
this happens, but there is no reason why they should be preferred.) In fact, most D = 10 supergravity
models not only require ad hoc higher-dimensional matter fields to ensure proper compactification,
but entirely ignore gauge fields arising from the Kaluza-Klein mechanism (ie., from symmetries of
the compact manifold), so that all the gauge fields are effectively put into the theory by hand [8].
Kaluza’s original aim of explaining forces in geometrical terms is thus abandoned completely.



2.7 D = 10 Superstring Theory

A breakthrough in solving the uniqueness and anomaly problems of D = 10 theory occured when
Green & Schwarz [104] and Gross et al. [105] showed that there were two, and only two ten-
dimensional supergravity models in which all anomalies could be made to vanish: those based on
the groups SO(32) and Eg x Eg respectively. Once again, extra terms (known as Chapline-Manton
terms) had to be added to the higher-dimensional Lagrangian [8]. This time, however, the addition
was not completely arbitrary; the extra terms were those which would appear anyway if the theory
were a low-energy approximation to certain kinds of superstring theory.

The state of the art in compactified Kaluza-Klein theory, then, has shifted from supergravity
theories to superstring theories, the main significance of the former now being as low-energy limits of
the latter [89]. Superstrings (supersymmetric generalizations of strings) avoid the generic prediction
of tachyons that plagued the first string theories [106], but retain their best features, especially the
possibility of an anomaly-free path to quantum gravity [107]. In fact, their many virtues make them
the current favorite contender for a “theory of everything” [108]. Connections have recently been
made between certain superstring states and extreme black holes [14], and it has even been argued
that superstrings can help resolve the long-standing black hole information paradox [109].

Something of a uniqueness problem has persisted for D = 10 superstrings in that the groups
SO(32) and Fg x Fg admit five different string theories between them. But this difficulty has
recently been addressed by Witten [376], who showed that it is possible to view these five theories
as aspects of a single underlying theory, now known as M-theory (for “Membrane”) [377]. The low-
energy limit of this new theory, furthermore, turns out to be D = 11 supergravity! So it appears
that the preferred dimensionality of spacetime in compactified Kaluza-Klein theory may be switching
back to eleven.

Perhaps the biggest obstacle to a wider acceptance of these theories is the difficulty of extracting
clear-cut physical predictions from them. String theory is “promising ...,” one worker has said,
“ ..and promising, and promising” [110]. M-theory, which (unlike superstring theory) is not per-
turbative, is even more opaque; Witten has suggested that the “M” might equally well stand for
“Magic” or “Mystery” at present [378]. We will not consider these interesting developments further
here, directing the reader instead to the superstring reviews in [8], [111], [112] (a nontechnical account
may be found in [113]), or the recent reviews of M-theory in [378], [379].

2.8 The Projective Approach

Compactification of extra dimensions is not the only way to explain Kaluza’s cylinder condition.
Another, less well-known approach goes back to Veblen & Hoffmann [114] in 1931. These authors
showed that the fifth dimension could be “absorbed into” ordinary four-dimensional spacetime if
one replaced the classical (affine) tensors of general relativity with projective ones. Rather than
being regarded as new coordinates, the extra dimensions were effectively demoted to visual aids.
Because they were not physically real, there was no need to explain why they were not observed.
The price for this resolution of the problem was that one had to alter the geometrical foundation of
Einstein’s theory. This idea received attention from Jordan, Pauli and several others over the years
[39], [115]-[122]. Early versions of the theory ran afoul of experimental constraints on the Brans-
Dicke parameter w and had to be ruled out as untenable [15]. However the projective approach
has been revived in at least two new formulations. That of Lessner [15] assigns the scalar field a
purely microscopic meaning; this has interesting consequences for elementary particles [123]-[126].
The other, due to Schmutzer [16]-[18], endows the vacuum with a special kind of higher-dimensional
matter, the “non-geometrizable substrate,” thereby sacrificing Einstein’s dream of reducing physics
to geometry. This theory, however, does make a number of testable predictions [17], [127]-[129] which



are so far compatible with observation.

2.9 The Noncompactified Approach

An alternative to both the compactified and projective approaches is to take the extra dimensions at
face value, without necessarily compactifying them, and assume that nature is only approximately
independent of them - much as it was on Minkowski’s fourth coordinate at nonrelativistic speeds. In
other words, one avoids having to explain why cylindricity should be exact by relaxing it in principle.
Of course, the question remains as to why nature should be so nearly cylindrical in practice. If the
extra dimensions are lengthlike, then one might try to answer this by supposing that particles are
trapped near a four-dimensional hypersurface by a potential well. Ideas of this kind have been around
since at least 1962 [130]; for recent discussions see [131]-[134].

Confining potentials are not, however, an obvious improvement over compactification mechanisms
in terms of economy of thought. An alternative is to take Minkowski’s example more literally and
entertain the idea that extra dimensions, like time, might not necessarily be lengthlike. In this case
the explanation for the near-cylindricity of nature is to be found in the physical interpretation of the
extra coordinates; ie., in the values of the dimension-transposing parameters (like ¢) needed to give
them units of length. The first such proposal of which we are aware is the 1983 “space-time-mass”
theory of Wesson [135], who suggested that a fifth dimension might be associated with rest mass via
2t = Gm/c*. The chief effect of this new coordinate on four-dimensional physics was that particle
rest mass, usually assumed to be constant, varied with time. The variation was, however, small and
quite consistent with experiment. This model has been studied in some detail, particularly with
regard to its consequences for astrophysics and cosmology, by Wesson [19], [136]-[139] and others
[140]-[148], [149]-[158], [159]-[163], and has been extended to more than five dimensions by Fukui
[164], [165], with the constants & and e playing roles analogous to ¢ and G.

Variable gravity theories are, of course, not new. What is new in the models just described -
and what is important about noncompactified Kaluza-Klein theory in principle - is not so much the
particular physical interpretation one attaches to the new coordinates, but the bare fact that physics
is allowed to depend on them at all. 1t is clearly of interest to study the higher-dimensional Einstein
equations with a general dependence on the extra coordinates; ie., without any preconceived notions
as to their physical meaning. A pioneering effort in this direction was made in 1986 by Yoshimura
[166], who however considered only the case where the d-dimensional part of the (4 + d)-space could
depend on the new coordinates. The general theory, in which any part of the metric can depend on
the fifth coordinate, has been explored recently by Wesson and others [19]-[26], and its implications
for cosmology [167]-[170], [171]-[179] and astrophysics [180]-[185], [186]-[194] have become the focus
of a growing research effort. As this branch of Kaluza-Klein theory has not yet been reviewed in a
comprehensive manner, we propose to devote special attention to it in this report. Our intention
is to compare and contrast this branch of the subject with other ones, however, so we will make
frequent contact with the compactified and (to a lesser extent) projective theories.

3 The Kaluza Mechanism

Kaluza unified electromagnetism with gravity by applying Einstein’s general theory of relativity to a
five-, rather than four-dimensional spacetime manifold. In what follows, we consider generalizations
of his procedure that may be new to some readers, so it will be advantageous to briefly review the
mathematics and underlying assumptions here.



3.1 Matter from Geometry

The Einstein equations in five dimensions with no five-dimensional energy-momentum tensor are:

CA;AB — 0 ) (1)

or, equivalently:

Rap=0 |, (2)

where GAB = RAB — RQAB/Q is the Einstein tensor, RAB and R = ,@ABRAB are the five-dimensional
Ricci tensor and scalar respectively, and g4p is the five-dimensional metric tensor. (Throughout
this report capital Latin indices A, B, ...run over 0, 1, 2, 3, 4, and five-dimensional quantities are
denoted by hats.) These equations can be derived by varying a five-dimensional version of the usual
Einstein action:

1 ~
S = _ /R\/Ad“.rd , 3
ol gd xdy (3)

with respect to the five-dimensional metric, where y = x* represents the new (fifth) coordinate and
G is a “five-dimensional gravitational constant.”

The absence of matter sources in these equations reflects what we have emphasized as Kaluza’s
first key assumption (i), inspired by Einstein: that the universe in higher dimensions is empty. The
idea is to explain matter (in four dimensions) as a manifestation of pure geometry (in higher ones).
If, instead, one introduced new kinds of higher-dimensional matter, then one would have gained little
in economy of thought. One would, so to speak, be getting Weinberg’s “stone soup” [72] from a can.

3.2 A Minimal Extension of General Relativity

The five-dimensional Ricci tensor and Christoffel symbols are defined in terms of the metric exactly
as in four dimensions:

Rap = aCfiB - angc + fiBng - fingc )

~ 1. R ) R
IGs = §QCD(3AQDB +98Gpa — Opgan) - (4)

Note that, aside from the fact that tensor indices run over 0-4 instead of 0-3, all is exactly as it
was in Einstein’s theory. We have emphasized this as the second key feature (ii) of Kaluza’s approach
to unification.

Everything now depends on one’s choice for the form of the five-dimensional metric. In general,
one identifies the af-part of g4p with g,s (the four-dimensional metric tensor), the a4-part with
A, (the electromagnetic potential), and the 44-part with ¢ (a scalar field). A convenient way to
parametrize things is as follows:

2 19 2
~ Japs + K ¢ AQAB ’ﬂé Aa >
9AB) = ) Y
(@an) = (07 20 e 5)
where we have scaled the electromagnetic potential A, by a constant x in order to get the right
multiplicative factors in the action later on. (Throughout this report, Greek indices a, f, ...run

10



over 0, 1, 2, 3, and small Latin indices a, b, ...run over 1, 2, 3. The four-dimensional metric signature
is taken to be (+ - - -), and we work in units such that ¢ = 1. In addition, for convenience and
accord with other work, we set i =1 in §3, and G = 1 in in §7 and §8.)

3.3 The Cylinder Condition

If one then applies the third key feature (iii) of Kaluza’s theory (the cylinder condition), which means
dropping all derivatives with respect to the fifth coordinate, then one finds, using the metric (5) and
the definitions (4), that the af-, a4-, and 44-components of the five-dimensional field equation (2)
reduce respectively to the following field equations [15], [41] in four dimensions:

K
Gaﬂ = TTanM - a va(8ﬁ¢) - gaﬂD¢
804 2 43
VaFozﬂ = _3%}?&[3 ) D¢ = H4¢ Fa/@FQB ) (6)

where Go3 = Rap—Rgap/2 is the Einstein tensor, TEM = ga,ng;FV‘s/él—FgFﬂv is the electromagnetic

energy-momentum tensor, and Fig = 0, Ag — 03 A,. There are a total of 10 + 4 + 1 = 15 equations,
as expected since there are fifteen independent elements in the five-dimensional metric (5).

3.4 The Case ¢ = constant

If the scalar field ¢ is constant throughout spacetime, then the first two of egs. (6) are just the
Einstein and Maxwell equations:

Gap =8TGH°TH | VOF,=0 | (7)

where we have identified the scaling parameter x in terms of the gravitational constant G (in four
dimensions) by:

k=41G | (8)

This is the result originally obtained by Kaluza and Klein, who set ¢ = 1. (The same thing has
done by some subsequent authors employing “special coordinate systems” [9], [195].) The condition ¢
= constant is, however, only consistent with the the third of the field equations (6) when FagFaﬁ =0,
as was first pointed out by Jordan [39], [40] and Thiry [41]. The fact that this took twenty years to
be acknowledged is a measure of the deep suspicion with which scalar fields were viewed in the first
half of this century.

Nowadays the same derivation is usually written in variational language. Using the metric (5) and
the definitions (4), and invoking the cylinder condition not only to drop derivatives with respect to
y, but also to pull [ dy out of the action integral, one finds that eq. (3) contains three components
[10]:

2 0%Pp0,
s=- [ d4xr¢(—16a+ 1 Ear + 5T ¢) , )

where G is defined in terms of its five-dimensional counterpart G by:
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GEG//dy : (10)

and where we have used equation (8) to bring the factor of 167G inside the integral. As before, if
one takes ¢ = constant, then the first two components of this action are just the Einstein-Maxwell
action for gravity and electromagnetic radiation (scaled by factors of ¢). The third component is the
action for a massless Klein-Gordon scalar field.

The fact that the action (3) leads to (9), or - equivalently - that the sourceless field equations
(2) lead to (6) with source matter, constitutes the central miracle of Kaluza-Klein theory. Four-
dimensional matter (electromagnetic radiation, at least) has been shown to arise purely from the
geometry of empty five-dimensional spacetime. The goal of all subsequent Kaluza-Klein theories has
been to extend this success to other kinds of matter.

3.5 The Case A, = 0: Brans-Dicke Theory

If one does not set ¢ = constant, then Kaluza’s five-dimensional theory contains besides electro-
magnetic effects a Brans-Dicke-type scalar field theory, as becomes clear when one considers the
case in which the electromagnetic potentials vanish, A, = 0. Without the cylinder condition, this
would be no more than a choice of coordinates, and would not entail any loss of algebraic generality.
(It would be exactly analogous to the common procedure in ordinary electrodynamics of choosing
four-space coordinates in which either the electric or magnetic field disappears.) With the cylinder
condition, however, we are effectively working in a special set of coordinates, so that the theory is
no longer invariant with respect to general (ie., five-dimensional) coordinate transformations. The
restriction A, = 0 is, therefore, a physical and not merely mathematical one, and restricts us to the
“graviton-scalar sector” of the theory.

This is acceptable in some contexts - in homogeneous and isotropic situations, for example, where
off-diagonal metric coefficients would pick out preferred directions; or in early-universe models which
are dynamically dominated by scalar fields. Neglecting the A,-fields, then, eq. (5) becomes:

= (%5 5) (1)

With this metric, the field equations (2), and Kaluza’s assumptions (i) - (iii) as before, the action
(3) reduces to:

1

- 4 _
S = e d'z\/—gR¢p . (12)

This is the special case w = 0 of the Brans-Dicke action [196]:

[ —( P 0% P0a¢
SBD— /dx\/_g<167rG+w ¢2 >+Sm; (13)

where w is the dimensionless Brans-Dicke constant and the term S, refers to the action associated
with any matter fields which may be coupled to the metric or scalar field.

The value of w is of course constrained to be greater than ~500 by observation [197], so this simple
model is certainly not viable, in the present era at least. One can however evade this limit by adding
a nonzero potential V(¢) to the above action, as in extended inflation [198] and other theories [199],
[200]; or by allowing the Brans-Dicke parameter w to vary as a function of ¢, as in hyperextended
[201] and other inflationary models [202].
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3.6 Conformal Rescaling

One can also re-formulate the problem by carrying out a Weyl, or conformal rescaling of the metric
tensor. Conformal factors have begun to appear frequently in papers on Kaluza-Klein theory, but
they have as yet received little attention in reviews of the subject, so we will discuss them briefly
here, referring the reader to the literature for details.

The extra factor of ¢ in the action (9) above implies that, strictly speaking, the scalar field would
have to be constant throughout spacetime [10], [13] in order for the gravitational part of the action
to be in canonical form. Some authors [9], [195] have in fact set it equal to one by definition, though
this is of course not a generally covariant procedure. The offending factor can however be removed
by conformally rescaling the five-dimensional metric:

gap = Jap = VCgan (14)

where Q22 > 0 is the conformal (or Weyl) factor, a function of the first four coordinates only (assuming
Kaluza’s cylinder condition). This is one step removed from the simplest possible realization of
Kaluza’s idea. In compactified and projective theories, however, there can be no physical objection to
such a procedure since it takes place “in higher dimensions” which are not accessible to observation.
Questions only arise in the process of dimensional reduction; ie., in interpreting the “real,” four-
dimensional quantities in terms of the rescaled five-dimensional ones.

The four-dimensional metric tensor is rescaled by the same factor as the five-dimensional one
(Gap = Gop = Q?gas), and this has the following effect on the four-dimensional Ricci scalar [203]:

Q2

A convenient parametrization is obtained by making the trivial redefinition ¢? — ¢ and then
introducing the conformal factor Q? = ¢~ /3, so that the five-dimensional metric reads:

s [ e RGAA KGA,
(§45) = ¢ “(”1’;;@ ’ m@ ) , (16)

The same procedure as before then leads [8], [12], [13] to the following conformally rescaled action
instead of eq. (9) above:

1 ala¢al ¢
d4 F’O‘ﬂ - r-ar 17
/ VT (16G k2 2 ) ’ (17)
where primed quantities refer to the rescaled metric (ie., 3¢ = ¢"*?95¢), and G and k are defined
as before. The gravitational part of the action then has the conventional form, as desired.

The Brans-Dicke case, obtained by putting A, = 0 in the metric, is also modified by the presence
of the conformal factor. One finds (again making the redefinition ¢> — ¢ and using Q> = ¢~ /%)
that the action (12) becomes [13]:

. (R 1 0700
@ <167rG 6K @2 ) ’ (18)

In terms of the “dilaton” field o = Ing/(,/3x), this action can be written:

d*z ﬁ(m G od, ) : (19)
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which is the canonical action for a minimally coupled scalar field with no potential [204].

3.7 Conformal Ambiguity

The question of conformal ambiguity arises when we ask, “Which is the real four-dimensional metric
(ie., the one responsible for Einstein’s gravity) - the original gas, or the rescaled g; 57" The issue was
already raised at least as far back as 1955 by Pauli [119]. (The rescaled metric is sometimes referred to
in the literature as the “Pauli metric,” as opposed to the unrescaled “Jordan metric.”) Most authors
have worked with the traditional (unrescaled) metric, if indeed they have troubled themselves over
the matter at all [205]. Others [206], [207] have considered the interesting idea of coupling visible
matter (including that involved in the classical tests of general relativity) to the Jordan metric, but
allowing dark matter to couple to a rescaled Pauli metric. In recent years, a variety of new arguments
have been advanced in favor of regarding the rescaled metric as the true “Einstein metric” for all
types of matter in compactified Kaluza-Klein theory. The following paragraph is intended as a brief
review of these; many are discussed more thoroughly in [205].

The first use of conformal rescaling to pick out “physical fields” was in certain ten-dimensional
supergravity [208] and superstring [209] models of the early 1980s. It then appeared in work on
the quantum aspects of Kaluza-Klein theory [210], and on the stability of compactified Kaluza-Klein
cosmologies [211], [212]. In these papers it was asserted that conformal ambiguity affected the physics
at the quantum but not the classical level. This was supported by a demonstration [213] that the
mass of a five-dimensional Kaluza-Klein monopole was invariant with respect to conformal rescaling,
although it was speculated in this paper that the addition of matter fields would complicate the
situation. Cho [207] confirmed this suspicion by showing explicitly that the conformal invariance of
the Brans-Dicke action (13) would be broken for S,, = 0. This resulted in different matter couplings
to the metric for different conformal factors, which would manifest themselves as “fifth force”-type
violations of the weak equivalence principle [214]. He argued in addition that only one conformal
factor - the factor ¢~ /% used above - could allow one to properly interpret the metric as a massless
spin-two graviton [207]; and moreover that without this factor the kinetic energy of the scalar field
would be unbounded from below, making the theory unstable [61]. This last point has also been
emphasized by Sokolowski and others [205], [215], [216]. (Note that the conformal factor /@ used by
these authors is the same as the one discussed above; the exponent depends on whether one rescales
the five-, or only the four-dimensional metric. The scalar ¢ is related to ¢ simply by ¢ = ¢=%/2.) It
has also been claimed that conformal rescaling is necessary in scale-invariant Kaluza-Klein cosmology
[217] if one is to properly interpret the effective four-dimensional Friedmann-Robertson-Walker scale
factor. A recent discussion of conformal ambiguity in compactified Kaluza-Klein theory is found in
[218].

There is also something much like a conformal rescaling of coordinates in projective Kaluza-Klein
theory, notably in the work of Schmutzer after 1980 [16], [17], [127], [128], where it is introduced
in order to eliminate unwanted second-order scalar field terms from the generalized gravitational
field equations. In noncompactified Kaluza-Klein theory, by contrast, there has been no discussion
of conformal rescaling. This is largely because the extra dimensions are regarded as physical (if
not necessarily lengthlike or timelike). The five-dimensional metric, in effect, becomes accessible (in
principle) to observation, and conformally transforming it at will may no longer be so innocuous.
We will not consider the issue further in this report; interested readers are directed to Sokolowski’s
paper [205].
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4 Compactified Theories

So far we have introduced Kaluza’s theory, with its cylinder condition, but have deliberately post-
poned discussion of compactification because we wish to emphasize that it is logically distinct from
cylindricity, and in particular that it is only one mechanism by which to explain the apparently
four-dimensional nature of the world. We now turn to compactified Kaluza-Klein theory, but keep
our discussion short as this subject has been thoroughly reviewed elsewhere ([3]-[7], [8]-[14], [195]).

4.1 Klein’s Compactification Mechanism

The somewhat contrived nature of Kaluza’s assumption, that a fifth dimension exists but that no
physical quantities depend upon it, has struck generations of unified field theorists as inadequate.
Klein arrived on the scene during the tremendous excitement surrounding the birth of quantum
theory, and perhaps not surprisingly had the idea [2], [36] of explaining the lack of dependence by
making the extra dimension very small. (The story that this was suggested to him on hearing a
colleague address him by his last name has, so far as we know, no basis in historical fact.)

Klein assumed that the fifth coordinate was to be a lengthlike one (like the first three), and
assigned it two properties: (1) a circular topology (S'); and (2) a small scale. Under property (1),
any quantity f(z,y) (where x = (2, 2', 2%, 2®) and y = ) becomes periodic; f(x,y) = f(x,y+27r)
where 7 is the scale parameter or “radius” of the fifth dimension. Therefore all the fields can be
Fourier-expanded:

Gos(@,y) = > gl @)™ | Auwy)= Y AP (@) (20)

Slw,y) = Y oM,

n—=—-—0oo

where the superscript (™ refers to the nth Fourier mode. Thanks to quantum theory, these modes
carry a momentum in the y-direction of the order |n|/r. This is where property (2) comes in: if
r is small enough, then the y-momenta of even the n = 1 modes will be so large as to put them
beyond the reach of experiment. Hence only the n = 0 modes, which are independent of y, will be
observable, as required in Kaluza’s theory.

How big could the scale size r of a fourth spatial dimension be? The strongest constraints have
come from high-energy particle physics, which probes increasingly higher mass scales and correspond-
ingly smaller length scales (the Compton wavelength of massive modes is of the order M~'). Exper-
iments of this kind [55] presently constrain r to be less than an attometer in size (lam = 10~"®m).
Theorists often set r equal to the Planck length ¢, ~ 10-3%m, which is both a natural value and
small enough to guarantee that the mass of any n = 0 Fourier modes lies beyond the Planck mass
My ~ 1019 GeV.

In general, one identifies Kaluza’s five-dimensional metric (5) with the full (Fourier-expanded)
metric gag(z,y), higher modes and all. One then makes what is known in compactified theory
as the “Kaluza-Klein ansatz,” which consists in discarding all massive (n # 0) Fourier modes, as
justified above. In the five-dimensional case, the Kaluza-Klein ansatz amounts to simply dropping
the y-dependency of g.g, A, and ¢, giving the effective four-dimensional “low-energy” theory of the
graviton ggB, photon A(ao) and scalar ¢(*). For higher dimensions, though, the relationship between
the full metric and the metric obtained with the “Kaluza-Klein ansatz” is more complicated, as has

15



been emphasized by Duff et al. [11], [12]. These authors also stress the difference between these two
metrics and a third important metric in Kaluza-Klein theory, the ground state metric (gaz) which
is the vacuum expectation value of the full metric gap(x,y), and determines the topology of the
compact space. In the five-dimensional case described above, which is topologically M* x S!, this
looks like:

((9am)) = < o _01 ) , (21)

where 7,4 is the four-dimensional Minkowski space metric.

4.2 Quantization of Charge

The expansion of fields into Fourier modes suggests a possible mechanism to explain charge quan-
tization, and it is interesting to see what became of this idea [8]. One begins by introducing five-
dimensional matter into the theory, leaving aside for the moment questions as to what this would
correspond to physically. The simplest kind of matter is a massless five-dimensional scalar field

Y (z,y). Tts action would have a kinetic part only:
Sy = —/d%dy\/—gaAiﬁ@Az/; . (22)
The field can be expanded like those in eq. (20):

Oiay)= Y oWemr (23)

n=-—oo

When this expansion is put into the action (22), one finds (using eq. (16)) the following result [8],
analogous to eq. (9):

o (f) e [ (4o )

n

2] (24

From this action one can read off both the charge and mass of the scalar modes 1/3(”). Comparison
with the minimal coupling rule 0, — 0, + ieA, of quantum electrodynamics (where e is the electron
charge) shows that in this theory the nth Fourier mode of the scalar field v also carries a quantized
charge:

nK —1/2 nVv16mG
Qn:7(¢/dy> :W ) (25)

where we have normalized the definition of A, in the action (17) by dividing out the factor (¢ [ dy)'/?,
and made use of the definitions (8) and (10) for x and G respectively. As a corollary to this result
one can also come close to predicting the value of the fine structure constant, simply by identifying

the charge ¢; of the first Fourier mode with the electron charge e. Taking 7/ to be on the order of
the Planck length ¢, = VG, one has:
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(An improved determination of rv/¢ would presumably hit closer to the mark.) The possibility of
thus explaining an otherwise “fundamental constant” would have made compactified five-dimensional
Kaluza-Klein theory very attractive.

However, the masses of the scalar modes are not at all compatible with these ideas. These are
given by the square root of the coefficient of the 1)(™2-term:

I L
n 7“\/5

If r\/¢ ~ £, as we assumed, then the electron mass m; (corresponding to the first Fourier mode)
would be E;ll; ie., the Planck mass m, ~ 10" GeV, rather than 0.5 MeV. This discrepancy of
some twenty-two orders of magnitude between theory and observation played a large role in the
abandonment of five-dimensional Kaluza-Klein theory.

(27)

In modern compactified theories, one avoids this problem by doing three things [8]: (1) identifying
observed (light) particles like the electron with the n = 0, rather than the higher modes of the Fourier
expansion above. From eq. (27), these particles therefore have zero mass at the level of the field
equations. However, one then invokes: (2) the mechanism of spontaneous symmetry-breaking to
bestow on them them the modest masses required by observation. From eq. (25) above, there is
also the problem of explaining how the n = 0 modes can have nonzero charge (or, more generally,
nonzero couplings to the gauge fields). This is solved by: (3) going to higher dimensions, where
massless particles are no longer “singlets of the gauge group” corresponding to the ground state (eg.,
the 44-part of the metric (21) above). We look at this procedure briefly in the next section.

The other way to avoid the problems of compactified five-dimensional Kaluza-Klein theory is, of
course, to look at projective theories, or indeed to loosen the restriction of compactification on the
fifth dimension altogether. These approaches probably mean giving up the ready-made explanation
for charge quantization described above.

4.3 Extension to Higher Dimensions

The key to extending the Kaluza-Klein formalism to strong and weak nuclear interactions lies in
recognizing that electromagnetism has been effectively incorporated into general relativity by adding
U(1) local gauge invariance to the theory, in the form of local coordinate invariance with respect

to y = o', Assuming the extra coordinate has a circular topology and a small scale, the theory is
invariant under transformations:

y—y =y+flx) | (28)

where z stands for the four-space coordinates 2, z!, 2%, 23. With the aid of the usual tensor
transformation law (in five dimensions):

) R 0x¢ 0z
GaB — Jap = oA gpBIder (29)

one then finds that the only change to the metric (5) is:
Ay — A:l = Ay + aaf(T) ) (30)
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which is just a U(1) local gauge transformation. In other words the theory is locally U(1) gauge
invariant. [t is thus not surprising that electromagnetism could be contained in five-dimensional
general relativity.

To extend the same approach to more complicated symmetry groups, one goes to higher dimensions
[8]. The metric corresponding to the “Kaluza-Klein ansatz” (n = 0 modes only) can be written (cf.

eq. (5)):

<g%>:<gaﬁ+quuKﬁA;K5% éuu{ﬁ‘Ai> | (31)
ngKZVA}; Guw

where g, is the metric of the d-dimensional compact space. Indices y, v, ...1un from 1 to d, while
A, B, ...run from 0 to (3 + d), and «, 3, ...run from 0 to 3 as usual. The K/ are a set of n linearly
independent Killing vectors for the compact manifold (i = 1, ..., n). Analogously to eq. (28) one
then assumes that the theory is locally invariant under transformations:

Yyt =yt =yt Zsl(T)Kl“ : (32)

i=1

where the £'(z) are a set of n infinitesimal parameters. Because Killing vectors by definition satisfy:

oK} 9K 95
~ , + 7 ~ + K)\ J v

=0 (33)

the transformation law (29) leaves the g,,-part of the metric untouched, and the only effect on eq.
(31) is:

Al AT = Al 4 0,64 (x) (34)

which is a local gauge transformation whose gauge group is the isometry group (G, say) of the
compact manifold. Thus one might hope that higher-dimensional general relativity could contain
any gauge theory.

The larger symmetry of the higher-dimensional mechanism also allows for nonzero couplings of
the n = 0 modes to the gauge fields; ie., for “charged” massless particles (which, as we saw, was
impossible in the five-dimensional case). Massless scalar fields ¢,(x) in the adjoint representation of
the gauge group, for example, can be introduced [8] via:

O = da(2) Ki(y) (35)

and these in general have nonzero couplings to the gauge fields because the K*(y) are not covariantly
constant.

4.4 Higher-Dimensional Matter

It is crucial to realize, however, that the above “ansatz” metric (31) does not satisfy Einstein’s
equations in 4 + d dimensions unless the Killing vectors are independent of {y}, the extra coordinates
[8] - ie., unless the compact manifold is flat [7]. The ground state metric (cf. eq. (21)) is:

(<§AB>)=<”35 ! ) . (36)

-EJLW(?J)
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The vacuum Einstein equations are R,z — R(}AB/Q = 0. Since (Jag) = 1ap is flat, Rag = 0.
Therefore, from the a-components of the field equations, R must vanish. But then the pv-parts of
the same equations imply that RW = 0; ie., that g,, must also be flat. In what is perhaps a symptom
of the split that has developed since Klein between the particle physics and general relativity sides of
higher-dimensional unification research, early workers tended to ignore this “consistency problem”
[11], [12], and placed no restrictions on the compact manifold while continuing to use the metric
(31). Recently Cho [61]-[64] has raised related questions about whether the “zero modes” might not
become massive (and {y}-dependent) in the event of spontaneous symmetry-breaking, and has even
suggested “kicking away the ladder” of Klein’s Fourier modes entirely, basing dimensional reduction
a priori on isometry instead.

It is now widely recognized [13] that conventional compactification of d extra spatial dimensions
(where d > 1) requires either (1) explicit higher-dimensional matter terms, which can induce “spon-
taneous compactification” by imposing constant curvature on the compact manifold [70], [71]; or
(2) other modifications of the higher-dimensional theory, such as the inclusion of torsion [65]-[68] or
higher-derivative (eg. R?) terms [69]. Most higher-dimensional compactified Kaluza-Klein theories
rely on higher-dimensional matter of one kind or another. For example, in Freund-Rubin com-
pactification [86], which is the basis of eleven-dimensional supergravity, one introduces a third-rank
antisymmetric tensor field ABCD with field strength:

FABCD = aAABCD - aBAACD + aCAABD - aDAABC ; (37)

and free action given by:

1

Si=— At e/~ gF FABCD 38
A 3847rG/ 2 9’ ABCD ( )

The effect of this [13] is to add an explicit energy-momentum tensor to the right-hand side of the
higher-dimensional Einstein equations (1):

~

1 A . 1~ N
T - = F FCDE o —F FC'DEFA 39
AB 487rG< CDEAL'R 3 CDEF gaB ) ( )

The matter fields required to achieve compactification are not the end of the story, however. Others
are in general needed if the theory is to contain the full gauge group of the standard model (including
strong and weak interactions). Witten [84] has shown that this requires a theory of at least eleven
dimensions (including the four macroscopic ones). While there are an infinite number of compact
seven-dimensional manifolds whose isometry groups G O SU(3) x SU(2) x U(1), none of them give
rise to realistic quark and lepton representations [8], [13]. It is possible to obtain quarks and leptons
from other manifolds such as the 7-sphere and the “squashed” 7-sphere [12]. The symmetry groups
of these manifolds (SO(8) and SO(5) x SU(2) respectively) are, however, not large enough to contain
the standard model, and additional “composite” matter fields [13], [91] are therefore required.

Explicit higher-dimensional fields may also be required to incorporate chirality into eleven-dimen-
sional compactified theory [7], [73], [77] (this is difficult in an odd number of dimensions). Two other
schemes by which this might be accomplished are modifications of Riemannian geometry [100]-[102]
and noncompact internal manifolds [93]-[99]. Thus in the D = 11 “chirality problem” one finds again
a choice between sacrificing either (i) the equation “Matter=Geometry;” (ii) the geometrical basis
of Einstein’s theory; or (iii) cylindricity. Compactified theory has in general been characterized by a
readiness to drop (i).

We conclude this section by noting that the situation (with regard to non-geometrized matter)
does not improve in ten-dimensional compactified theory; in fact, in many cases a six-dimensional
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internal manifold with no isometries is used [8], which means that all the matter is effectively put
in by hand, marking a complete abandonment of the original Kaluza programme. Besides ensuring
compactification and making room for fermions, extra terms in the ten-dimensional Lagrangian
also play a role in suppressing anomalies. In the two most popular D = 10 theories, for example
(those based on the symmetry groups SO(32) [104] and Eg x FEg [105]), this is accomplished by
Chapline-Manton terms [8]. To the extent that these terms arise naturally in the low-energy limit of
ten-dimensional superstring theory, however, they are less arbitrary than some of the others we have
mentioned. There is no doubt that superstrings currently offer, within the context of compactified
Kaluza-Klein theory, the best hope for a unified “theory of everything” [89], [108]. Whether the
compactified approach is the best one remains - as we hope to show in the rest of this report - an
open question.

5 Projective Theories

Projective theories were designed to emulate the successes of Kaluza’s five-dimensional theory without
the epistemological burden of a real fifth dimension. Early models did this too well: like Kaluza’s
(with no dependence on the fifth coordinate and no added “higher-dimensional matter” fields) they
gave back w = 0 Brans-Dicke theory when the electromagnetic potentials were switched off. This
contradicted time-delay measurements like that of the Martian Viking lander [197]. There were other
problems as well [16]. Modern projective theories [15]-[18] attempt to overcome these shortcomings
in at least two different ways.

5.1 A Theory of Elementary Particles

Lessner [15] has suggested that, although experiments rule out a macroscopic Brans-Dicke-type scalar
field, the theory might still be applicable on microscopic scales, and could be used to describe the
internal structure of elementary particles. He begins with the same five-dimensional field equations
(2) (now interpreted as projector equations), and obtains the same four-dimensional field equations
(6), except that the constant G is replaced by “B,” which becomes essentially a free parameter of
the theory. A solution (gas, Fas, ¢) of the field equations is called a “particle” if it satisfies certain
conditions on symmetry, positivity and asymptotic behaviour [15]. Some of the properties of these
particles are explored in [123]-[126]. The theory is only applicable to macroscopic phenomena when
¢ = 1 and the third of the field equations (6) is omitted.

5.2 Projective Unified Field Theory

Schmutzer has taken an alternate approach since 1980 in his “projective unified field theory” or
PUFT [16]-[18] by explicitly introducing “non-geometrizable matter” (the so-called “substrate”). In
ordinary Kaluza-Klein theory this would correspond to higher-dimensional matter and be represented

in the five-dimensional Einstein equations (1) by a nonzero energy-momentum tensor TAB; in the
projective theory one has instead an energy projector 0 p:

éABZSWééAB . (40)

There is also a conformal rescaling of the four-dimensional metric, as mentioned earlier:

Gap — giyﬁ = eiagaﬁ ) (41)
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where o is a new scalar field. Egs. (40) break down, analogously to the five-dimensional ones (2), to
the following set of equations in four dimensions:

Gop = 87G(To +Sap +045) . VHY =J0 |
2 1
Oo = 87rG(§19 + 5Baﬂﬂaﬂ> : (42)

where TfﬂM is the electromagnetic energy-momentum tensor as before, and where there are also two

new energy-momentum tensors: the substrate energy tensor .5 = éag and the scalaric energy tensor
Yap defined by:

3 1
- _ Y
ap 6nC <8a08ﬂ0 2ga56 0’870'> . (43)

The other terms in eqs. (42) are the electric four-current density .J,, the electromagnetic field
strength tensor B,g, the induction tensor H,3 = 63"Ba5 (the factor €37 acts here as a kind of “scalaric
dielectricity” ), and one more new quantity, the scalaric substrate density:

3
V=e"0% — S0 (44)

The conservation of energy V40,45 = 0 implies not only conservation of four-current (Vo J* =0)
but also conservation of substrate energy:

V30’ = ~B§J" + 9V . (45)

The existence of substrate and scalaric matter in PUFT gives rise to phenomena such as “scalaric
polarization” of the vacuum, and violations of the weak equivalence principle for time-dependent
scalaric fields. These can be quantified in terms of a “scalarism parameter” v, defined as the ratio
of scalaric substrate density to the density p of ordinary matter:

vy=9d/p . (46)

This number becomes in practice the primary free parameter of the theory, showing up in PUFT-
based cosmological models [127], [129], equivalence principle-type experiments [128], and Solar Sys-
tem tests (perihelion shift, light deflection and time delay) [17]. Experimental constraints on the
theory take the form of upper limits on the size of ~.

In comparing these projective theories to the compactified Kaluza-Klein theories of the last sec-
tion, one could perhaps summarize as follows: Kaluza’s unified theory as it stands is an elegant (no
higher-dimensional matter) and minimal extension of general relativity, but suffers from the defect
of a very contrived-looking cylinder condition. Five-dimensional compactified theory, beginning with
Klein, repairs this flaw (and even offers the possibility of explaining charge quantization) but turns
out to disagree radically with observation. To overcome this problem within the context of compact-
ified theory, one has to go to higher dimensions and either introduce higher-dimensional matter or
higher-derivative terms to the Einstein action, if one wishes to obtain satisfactory compactification.
Projective theory offers an alternative way to “explain” the cylinder condition, and can (unlike com-
pactified theory) be formulated in a way that is compatible with experiment using only one extra
“dimension.” This comes at the price, however, not only of modifying the geometrical foundation
of Einstein’s theory, but (in Schmutzer’s case) of introducing a “non-geometrizable substrate,” or
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(in Lessner’s case) of limiting one’s ambitions to microscopic phenomena. Overall, the projective
approach does not appear to us to be an improvement over compactified theory.

6 Noncompactified Theories

An alternative is to stay with the idea that the new coordinates are physical, but to generalize
the compactified approach by relaxing the cylinder condition [19]-[26], instead of restricting the
topology and scale of the fifth dimension in an attempt to satisfy it exactly. This means that
physical quantities, including in particular those derived from the metric tensor, will depend on
the fifth coordinate. In fact it is precisely this dependence which allows one to obtain not only
electromagnetic radiation, but matter of a very general kind from geometry via the higher-dimensional
field equations. The equations of motion, too, are modified by dependence on extra coordinates. We
review these facts in the next few sections.

Of course, the fifth dimension might also be expected to appear elsewhere in physics, and one
of the primary challenges of noncompactified theory is to explain why its effects have not been
noticed so far. Why, for example, have experiments such as those mentioned earlier [55] been able
to restrict the size of any extra dimensions to below the attometer scale? In noncompactified theory,
the answer is that extra coordinates are not necessarily lengthlike, as these experiments assume.
Following Minkowski’s example, one can imagine coordinates of other kinds, scaled by appropriate
dimension-transposing parameters (like c¢) to give them units of length. We review this important
issue, and the evidence for the hypothesis that a fifth dimension might be physically related to rest
mass, at the end of §6. For the moment, however, we put off questions of interpretation and begin by
simply seeing how far Kaluza’s five-dimensional unified field theory can be taken when the cylinder
condition is dropped.

6.1 The Metric

Without cylindricity, there is no reason to compactify the fifth dimension, so this approach is properly
called “noncompactified.” Noncompact extra dimensions have also been considered in compactified
Kaluza-Klein theory by Wetterich and others [93]-[99] as a way to bring chiral fermions into the theory
and arrange for a vanishing four-dimensional cosmological constant. These authors, however, retain
Klein’s mechanism of harmonic expansion, which in turn means that the compact manifold must
have finite volume. In the fully noncompactified approach we wish to make no a priori assumptions
about the nature of the extra-dimensional manifold.

We begin with the same five-dimensional metric (5) as before, but choose coordinates such that
the four components of A, vanish. Since we are no longer imposing cylindricity on our solutions,
this entails no loss of algebraic generality; it is analogous to the common strategy in electromagnetic
theory of choosing coordinates such that either the electric or magnetic field vanishes. We also eschew
any conformal factor here, preferring to treat the fifth dimension on the same footing as the other
four. The five-dimensional metric tensor, then, is:

= (% ) (47)

where we have introduced the factor ¢ in order to allow a timelike, as well as spacelike signature for
the fifth dimension (we require only that % = 1).

Timelike extra dimensions are rarely considered in compactified Kaluza-Klein theory, for several
reasons [13]: (1) they lead to the wrong sign for the Maxwell action in eq. (9) relative to the
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Einstein one; and (2) they lead to the wrong sign for the mass m, of the charged modes in eq.
(24); ie., to the prediction of tachyons. The relevance of these two arguments to noncompactified
theory may be debated. A third common objection (3) is that additional temporal [13] or timelike
[7], [86] dimensions would lead to closed timelike curves and hence allow causality violation. One
should be careful here to discriminate between temporal dimensions, which actually have physical
units of time; and timelike ones, which merely have timelike signature. If the physical nature of the
fifth coordinate were actually temporal, one could certainly imagine problems with causality. One
can, however, transpose units with the proper combination of fundamental constants; changing a
temporal one, for instance, into a spatial one with ¢. With regard to timelike extra dimensions, the
situation is also less clear than is sometimes claimed. It has even been argued [219] that physics
might be quite compatible with closed timelike curves. All in all, it is probably prudent to keep an
open mind toward the signature of a physical fifth dimension.

6.2 The Field Equations

One now follows the same approach as Kaluza, using the same definitions (4) of the five-dimensional
Christoffel symbols and Ricci tensor. Now, however, one keeps derivatives with respect to the fifth
coordinate x* rather than assuming that they vanish. The resultant expressions for the a3-, a4- and
44-parts of the five-dimensional Ricci tensor Rz are [20]:
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where “07 is defined as usual (in four dimensions) by O¢ = g**V5(9,¢).

We assume that there is no “higher-dimensional matter,” so the Einstein equations take the form
(2), Rap = 0. The first of eqs. (48) then produces the following expression for the four-dimensional
Ricci tensor:

Vv aa¢ € 0 ¢a Ja
R.s = 7’8:5 )—2752<74 ¢4 7 9,(Dagas)
7904050100
+g76a4ga’ya4g,85 - W) (49)

The second can be written in the form of a conservation law:
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VPl =0, (50)

where we have defined a new four-tensor by:

pb !
“ 2V 0w

And the third of eqs. (48) takes the form of a scalar wave equation for ¢:

(gﬁ’764g’ya - 65649’)’6) . (51)
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(52)

Eqgs. (49) - (52) form the basis of five-dimensional noncompactified Kaluza-Klein theory. It only
remains to interpret their meaning in four dimensions, and then to apply them to any given physical
problem by choosing the appropriate metric g4ag. The rest of §6 is taken up with interpretation;
applications to cosmology and astrophysics are the subjects of §7 and §8. We concentrate in this
report on the five-dimensional case. The extension to arbitrary dimensions has yet to be investigated
in detail, although some aspects of this have recently been discussed by Rippl, Romero & Tavakol
[24]. (These authors also consider noncompactified lower-dimensional gravity, which might be more
easily quantized than Einstein’s theory).

6.3 Matter from Geometry

The best-understood of eqs. (49) - (52) is the first. It allows us to interpret four-dimensional matter
as a manifestation of five-dimensional geometry [20]. One simply requires that the usual Einstein
equations (with matter) hold in four dimensions:

1
SWGTag = Rag — §Rga/3 s (53)

where T, is the matter energy-momentum tensor. Contracting eq. (49) with the metric g®¥ gives
(with the help of eq. (52)) the following expression for the four-dimensional Ricci scalar:

R= v [849 % 04gap + ( "634.%[3)2] : (54)

Inserting this result, along with eq. (49), into eq. (53), one finds that:

87GT,s = -

04004194
vﬁ [ 10019ap 04(049ap) + 9"° 04gar 01955

g 649;5649(15 N Tg@g Dagos + (5" 64%)2)} | (55)

Provided we use this expression for 7,4, the four-dimensional Einstein equations G5 = 87GT,p
are automatically contained in the five-dimensional vacuum ones G ap = 0. The matter described by
T, is a manifestation of pure geometry in the higher-dimensional world. This has been termed the
“induced-matter interpretation” of Kaluza-Klein theory, and eq. (55) is said to define the energy-
momentum tensor of induced matter.
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This tensor satisfies the appropriate requirements: it is symmetric (the first term is a second
derivative, while the others are all explicitly symmetric), and reduces to the expected limit when the
cylinder condition is re-applied (ie., when all derivatives 0, with respect to the fifth dimension are
dropped). In this case, the scalar wave equation (52) becomes just the Klein-Gordon equation for a
massless scalar field:

Op=0 ; (56)

and the contracted energy momentum tensor of the induced matter vanishes:

T=g"Tp=0 , (57)

which implies a radiationlike equation of state (p = p/3) for the induced matter, in agreement
with earlier work [220] based on the cylinder condition. The induced matter in this case consists
of photons, the gauge bosons of electromagnetism - exactly the same result obtained by Kaluza.
This is the only kind of matter one can obtain in the induced-matter interpretation as long as the
cylinder condition is in place. To extend Kaluza’s approach to other kinds of matter, it is necessary
to do one of two things: (1) go to higher dimensions and add an explicit energy-momentum tensor
(or other terms) to the higher-dimensional vacuum field equations (compactified theories in practice
involve both these things); or (2) loosen the restriction of cylindricity. In noncompactified theory,
which takes the latter course, it turns out that matter described by 7,5 - even in five dimensions - is
already general enough to describe many physical systems, including in particular those connected
with cosmology and the classical tests of general relativity.

The interpretation of egs. (50) and (52) - the a4- and 44- components of the five-dimensional
field equations (R,p = 0) - is not as straightforward as that of eq. (49). The relative simplicity of
the conservation equation (50) suggests that there is a deeper physical significance to the four-tensor
P?, whose fully covariant form is Pug = (01905 — 9asg"°019+5)/(2/Gaa). It may be related to more
familiar conserved physical quantities, or to the Bianchi identities [20].

Alternatively, it has been conjectured [177] that, as the af-components of the field equations link
geometry with the macroscopic properties of matter, so the a4- and 44-components might describe
their microscopic ones. In particular, if one makes the tentative identification:

P.g = k(m;vavg + mygap) (58)

where £ is a constant, m; and my are the (suitably defined) inertial and gravitational mass of a particle
in the induced-matter fluid, and v® = dz®/ds is its four-velocity, then the conservation equation (50)
turns out to be the four-dimensional geodesic equation (for one class of metrics at least). This is
interesting, since equations of motion are usually quite distinct from the field equations. Similarly,
using appropriate definitions of particle mass m, one can identify the scalar wave equation (52) with
the simplest possible relativistic quantum wave equation, namely the Klein-Gordon equation:

O¢ = m’p . (59)

The relevant expression for particle mass turns out to depend explicitly on the components of
the metric, which means that this variant of noncompactified Kaluza-Klein theory is a realization
of Mach’s Principle [251], [252]. These are interesting results, but speculative ones, and we do
not discuss them further here. Some other Machian aspects of noncompactified theories have been
explored in [25], [150], [178], [179], [184].
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6.4 The Spherically-Symmetric Case

To appreciate what the induced-matter energy-momentum tensor (55) means physically, one has to
supply a five-dimensional metric g4p - preferably one specific enough to simplify the mathematics
but general enough to be broadly applicable, eg., to both cosmological and one-body problems. We
begin here with the general spherically-symmetric five-dimensional line element:

ds® = e’dt’ — erdr® — R*(d0” + sin’0de*) + setdy?® (60)

where € serves the same function as before, ¢, r, # and ¢ have their usual meanings, 1 is the fifth
coordinate, and v, A\, R and p are, for now, arbitrary functions of r, ¢ and . Denoting derivatives
with respect to ¢ by overdots ('), derivatives with respect to r by primes (/), and derivatives with
respect to ¢ by star superscripts (*), one finds [21] that the energy-momentum tensor (55) of induced
matter has the following nonzero components:
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If one then assumes that this induced matter takes the form of a perfect fluid:

Tg = (p+p)u®us — pdg (62)

where u® is the four-velocity of the fluid elements, then the density p and pressure p can be readily
identified [21] from the relations p = T + T}! — T} and p = —T%. Inserting the expressions (61), one
obtains:

3/e MR e VLR
8rGp = - -
P 2< R R >
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[t is immediately apparent that under the restriction of cylindricity (all starred quantities vanish),
one can obtain only radiation (p = p/3) from Kaluza’s mechanism, as noted already.

With the relaxation of this condition, by contrast, one obtains a very general equation of state.
For example, one can split the density and pressure into four components (p = p, + pg + p, + ps and
P = pr + pa + po + ps), where the radiation component obeys p, = p,/3, the dust-like component
obeys pg = 0, the vacuum component obeys p, = —p,, and the stiff component obeys p; = ps. One
then finds from eqs. (63) that:

3 (e MR e ViR 3ee M (R*'v* R*
pro = 167rG< R R >+87rG<2R - R) !
B ce PR
pa = C4nGR?
ce "R ([, .,
v = TG (” +A> ’
e FUrN*
S e oY

From the first of these equations, it follows that in a radiationlike universe whose metric coefficients
depend only on time, the fifth dimension must contract with time (4 < 0) if one is to have spatial
expansion (R > 0) and positive density (p, > 0). Mechanisms of this sort have been used in
compactified Kaluza-Klein cosmology to pump entropy into the four-dimensional universe, solving
the horizon and flatness problems [221]; or indeed to explain why the fifth dimension is compact in
the first place [222] (see §7.1). In the noncompactified approach, they no longer have to be assumed a
priori, but can be seen to be required by the field equations. From the second of the above equations,
meanwhile, it follows that a dustlike universe must have a spacelike fifth dimension (¢ = —1 in our
convention) in order for its density to be positive (p; > 0). This agrees with the causality argument

(56.1).

6.5 The Isotropic and Homogeneous Case

One can go farther by making additional assumptions about the metric. Suppose the line element
(60) is rewritten in spatially isotropic form:

ds® = e’dt* — e (dr® + r’dQ?) + eeldyp” | (65)

where dQ? = df? + sin® fd¢?. If one assumes that v, w and yu are separable functions of the variables
t, r and 1, one can obtain specialized solutions to the field equations (2) whose properties of matter,
as specified by the energy-momentum tensor (61), agree very closely with those expected from four-
dimensional theory.

Consider first the case of dependence on ¢ only. The metric (65) is then just a five-dimensional
generalization of a flat homogeneous and isotropic Friedmann-Robertson-Walker (FRW) cosmology.
But in the context of noncompactified Kaluza-Klein theory, one ought also to allow dependence on the
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extra coordinate . So the general flat five-dimensional cosmological metric, assuming separability,
should have:

e’ = T*()X2(Y) , e =U*()Y*(y) , e =Vi)Z2%(W) . (66)

Ponce de Leon [145] was the first to investigate solutions of the vacuum Einstein equations (2)
with this form. Of his eight solutions, one is of special interest because it reduces on hypersurfaces
1) = constant to the spatially flat four-dimensional FRW metric. This solution has ¢ = —1 and:

T(t) = constant , X)) xtp
Ut)oct'™  Y(@) oyt
V(t)xt ,  Z(t) = constant (67)

and can be written in the form:

2
ds? = 2dt> — t2/2?/ 0= (da? + dy? + d2?) — ﬁﬂdw? : (68)
—
where dz?+ dy? + dz? = dr? +r?d)? are the usual rectangular coordinates, and « is a free parameter
of the theory [168]. Because this solution reduces on spacetime sections (di¢) = 0) to the familiar
k =0 FRW metric:

ds® = dt? — R*(t)(da? + dy? + d2*) | (69)

it can properly be called the generalization of the flat FRW cosmological metric to five dimensions.

Assuming that cosmological matter behaves like a perfect fluid, one obtains from eqs. (63) the
following expressions for density and pressure [167]:

3 200
P= 8rGay2t2 p= (_ B 1)p ’ (70)
These are consistent with a wide variety of equations of state: a radiation-dominated universe, for
example, if & = 2; a dust-filled one if @ = 3/2; or an inflationary one if 0 < o < 1. Physical properties
of cosmologies based on the metric (68) have been explored in [167]-[171], and its implications for
the equations of motion (eg., of galaxies) are known [172]. Generalizations to k£ # 0 cosmologies
[173], [174] and extended (eg., Gauss-Bonnet) theories of gravity [175], [176] have been made, and
a connection to Mach’s principle [25], [177]-[179] has been identified. These and related issues are
reviewed in §7.

One other of Ponce de Leon’s homogeneous and isotropic solutions [145] deserves mention. It has:

T(t) = constant ,  X(¢) x¢p
U ocexp (VABE) L Y@ xv
V(t) = constant ~ ,  Z(y) = constant (71)
and looks like:
ds? = 2dt? — 2>V da? + dy? + d2?) — dip? . (72)
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This reduces on spacetime hypersurfaces (¢ = constant) to the de Sitter metric, and A = 3/¢? is a
cosmological constant induced in four-dimensional spacetime by the existence of the fifth coordinate
1. The equation of state of the “matter” induced in four dimensions is that of the classical de Sitter
vacuum, p = —p, with p = A/(87G).

Billyard & Wesson [171] have considered generalizations of this solution:

d§2 — w2dt2 - 2€iwt(eiklzd1‘2 + e’ikzydyQ + e’ik3zd22) + g?de ’ (73)

where w is a frequency, k; a wave vector, and ¢ measures the size of the extra dimension. The
induced-matter equation of state is again p = —p, but now with p = —3w?/(327G®?). The field
equations (2) turn out to require £ = 4/w? so the vacuum has positive energy density if the fifth
dimension is spacelike. The metric coefficients of ordinary three-space exhibit wave-like behaviour,
but the associated medium is an unperturbed de Sitter vacuum - so this solution describes what
might be termed “vacuum waves” in Kaluza-Klein theory. (They are not gravitational waves of the
conventional sort because three-space is spherically-symmetric.) One might apply this to the infla-
tionary universe scenario; imagining, for example, that w starts out with real values (corresponding
to a vacuum-dominated universe with oscillating three-space coefficients) but later takes on imag-
inary values (for which the universe enters an expanding de Sitter phase of the usual kind). On
this interpretation, the big bang occurs as a (presumably quantum-induced) phase change - as has
previously been suggested elsewhere on other grounds [223], [224].

6.6 The Static Case

The metric (65) reduces to another well-known form when the coefficients v, w and p depend only on
the radial coordinate r. This is just a five-dimensional generalization of the one-body or Schwarzschild
metric, and has been variously interpreted in the literature as describing a magnetic monopole [225],
“black hole” [227], and soliton [226] (see §8.1 for discussion). Again, however, from a noncompactified
point of view there is no a priori reason to suppress dependence on v, so a general static spherically-
symmetric metric, assuming separability, should have:

e’ = A2 (r)D*(¢) , e = B*(r)E*(¢) , et =CHr)F(y) . (74)

Ponce de Leon & Wesson [21] searched for two-parameter solutions of the five-dimensional field
equations (2) with this form and found only four. (Liu & Wesson [193], [194] have recently obtained a
three-parameter generalization of this class). The most useful is the one which contains the ordinary
four-dimensional Schwarzschild solution as a limiting case. This is the solution with D, E and F
constant (= 1 without loss of generality), and is thus identical to the soliton metric just mentioned.
The coefficients A, B and C are:

1\ 1 (ar + 1)k—D+
Alr) - ( ) . Blr) = Y |
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Ct) - <ar+1>€ | (75)
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where a is a constant related to the mass of the central body, and ¢ and k are other parameters
(in the notation of [227]). Only one of these is strictly a free parameter, as they are related by a
consistency relation:

ek —k+1)=1 . (76)
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Written out explicitly, the metric is:

ds® = A%(r)dt* — B*(r)(dr® + r?dQ?) — C*(r)dy® (77)

where we have assumed a spacelike fifth coordinate (¢ = —1) in agreement with other work. In the
limits € — 0, £ — oo, and ek — 1 (where a = 2/GM, and M, is the mass of the central body),
this metric reduces on spacetime sections di) = 0 to the familiar Schwarzschild metric (in isotropic
coordinates):

1—GM,/2r\* GM,\*
o — a1 . 24 r2d0%) .
ds (1+GM*/2T> dt < +— ) (dr® 4 r=d€)Y?) (78)

It is therefore properly called the generalization of the Schwarzschild metric to five dimensions.
Elsewhere in §6 we will refer to the above values of and k£ as the “Schwarzschild limit” of the theory.

Assuming as usual that the induced matter takes the form of a perfect fluid, eqs. (63) give for
both solutions the following density and pressure [180]:

_ e2kabr? ar — 1 2e(k—1) P (79)
P 2rG(ar — 1)*(ar + 1)* \ar + 1 - PT3

The soliton metric (77) thus describes a central mass surrounded by an inhomogeneous cloud
of radiation-like matter whose density goes as ~ 1/a?r" at large values of 7. (The Schwarzschild
limit defined above is the special case where the density and pressure of the cloud are zero; in this
case p = 0 = —p which is the usual vacuum solution, with its attendant classical tests of general
relativity.) The e?k-term indicates that this combination of the two (related) parameters ¢ and k
may characterize the soliton’s energy density [181]. (This is somewhat different from the traditional
interpretation, in which these parameters are related to its “scalar charge” [215], [228].) The equation
of state (79) obtained in the induced-matter interpretation differs from the one found by Davidson
& Owen [227], who used an approach based on Kac-Moody symmetries [59] and concluded that
p = —p/3. Density shows the same r-dependence at large distances in both approaches, however,
and goes to zero in the same Schwarzschild limit. Both solutions are invariant under a — —a,
e — —¢, and require £ > 0 for positive density. One can define a pressure three-tensor pj in the
induced-matter interpretation, using the ab-components of the vacuum field equations (2), and this
yields a result [180] very similar to the series expression obtained by Davidson & Owen. If one then
takes p = p?/3 (as in [227]), one gets back exactly the result in eq. (79).

In Cartesian spatial coordinates the pressure tensor in general contains off-diagonal components,
which implies that the matter making up the soliton is a sum of both a material (perfect) fluid and
a free electromagnetic field [180]. The terms “density” and “pressure” therefore have to be treated
with caution. Solitonic matter, in fact, is best be described as a relativistic fluid with anisotropic
pressure [181]. Anisotropic spherically-symmetric fluids have an energy-momentum tensor given by:

Top = (p+pL)uaus + (P —PL)XaXs +PLYas (80)

where x, is a unit spacelike vector orthogonal to u,, and py, p, refer to pressure parallel and
perpendicular to the radial direction. Assuming that the induced matter (61) takes this form rather
than that of the perfect fluid (62); and choosing u® = (u°,0,0,0), x* = (0, x",0,0), one finds:

. {1<a2r2—26(k—1)ar+1>]p |

ear
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b = <a r 26;]€ ar + 1>p | (81)
ear

with p exactly as in eq. (79). These expressions satisfy p = p| + 2p,, confirming that the fluid
has the nature of radiation. The physical properties of solitons based on the metric (77) have been
studied by several authors [180]-[183], [225]-[228]. Their implications for astrophysics [184], [185], the
classical tests of general relativity [187]-[189], and the equivalence principle [190] have been explored,
and the class has been extended to time-dependent [191], [192] and charged solutions [193], [194].
These and related issues are reviewed in §8.

We mention for completeness the other three static solutions of the form (74) obtained by Ponce
de Leon & Wesson [21]. Two of them have A(r), B(r) and C(r) exactly as in egs. (75), but have
F(v) an arbitrary function of ¢, with D*(¢) o F(¢)) and E(¢) = constant in the first case, and
D(¢)) oc E7Y(¢) and E*(¢)) < F(¢)/E(¢) in the second one. The density and pressure for both these
solutions is exactly as in eqs. (79) above, except for an added factor of E?(¢) in the denominators.
This is physically innocuous in the first case (F(¢) = constant) but means in the second one that
these attributes of the radiation cloud depend on the extra coordinate. The ¢)-dependent components
of the field equations place an extra constraint on these both these solutions, restricting the allowed
values of the parameters € and k. The final solution is more interesting, and can be written in the
form:

Y- dt* — W+ 0° (dr? + r?dQ*) + edy® (82)

ds? =
TR (a2 to)

where a is related to the mass of the central object as before, b = —z/4a, and ¢ is one other
independent constant of the system. Although this solution was found by assuming separability in
r and 1), it also satisfies the field equations (2) when a and b are arbitrary functions of . This
is intriguing, as it hints at a relationship between the mass of the central object and the fifth
coordinate. Another interesting feature of the metric (82) is its induced-matter equation of state,
which - unlike that of the other soliton solutions found so far - is not radiationlike, but turns out
to be the one discussed by Davidson & Owen [227]: p = —p/3. This is an unusual form of matter,
but has been considered previously in several other contexts [229]-[232], largely because it describes
matter that does not disturb other objects gravitationally (gravitational or Tolman-Whittaker mass
is proportional to 3p 4+ p). Thus it might, for instance, be useful in reconciling the extremely high
energy densities expected for quantum zero-point fields with the small value observed for Einstein’s
cosmological constant [231].

6.7 General Covariance in Higher Dimensions

We have reviewed a number of solutions to the spherically-symmetric vacuum field equations in
five dimensions. In each case the five-dimensional geometry manifests itself in four dimensions as
induced matter, with an associated equation of state. The equation of state, in fact, follows from the
field equations in the induced-matter interpretation of Kaluza-Klein theory, rather than having to
be supplied separately as in four-dimensional general relativity. In several cases, the physical form
of the metric on spacetime hypersurfaces diy) = constant, or the equation of state for the induced
matter, is such as to make the solutions useful for testing the predictions of noncompactified theory.
The theory is so far not in conflict with any experimental data (see §7 and §8).

However, it is important to keep in mind that physical quantities such as the scalars p and p, which
are designed to be invariant with respect to four-dimensional coordinate changes x®* — 2% cannot
in general stay that way in noncompactified Kaluza-Klein theory, which is invariant with respect to
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five-dimensional ones z** — . Any quantities - even those normally thought of as conserved - are
vulnerable if they depend on the fifth coordinate z*.

What this means in practice is that density, pressure, and the equation of state in the induced-
matter interpretation are to some extent dependent on the coordinates in which one chooses to express
them. A search for the correct solution to a (four-dimensional) physical problem is also a search for
the appropriate system of (five-dimensional) coordinates. This can perhaps best be illustrated with
a series of simple z*-dependent coordinate transformations [23]|, beginning with five-dimensional
Minkowski space:

482 = dt* — dr® — r2d0? — dy? . (83)

Spacetime sections of this metric are of course four-dimensional Minkowski spaces. If one trans-
forms to primed coordinates:

r 2 —-1/2 r2 1/2
t’:t , T’:E(l‘i‘E) s wl:w(l—i_E) ) (84)
this metric becomes:
2 2 2 2 2 7092 2
ds* =dt* — <1_T,2+T dQ)—dz/) ) (85)

Spacetime sections (¢)' = constant) of the new primed metric are static Einstein cosmologies; ie.,
four-dimensional FRW metrics:

dr'?

2 a2 p2y
ds™ =dt R(t)<71—kr’2

+ r'2d92> , (86)

with £ = +1 and a constant scale factor R(t') =1’ . One can obtain from the Friedmann equations
the value of Einstein’s cosmological constant A, and (assuming a perfect fluid) expressions for the
density and pressure of matter:

1 1
A=— | Pmn=—F15 >
Y Ar G

The cosmological constant represents a vacuum energy density p, = A/(87G) with associated
pressure p, = —p,. S0 altogether one has:

pm =0 . (87)

3 p
W sy P=Pm TP 5 - (88)

P = pm+p 5

The effective equation of state in the four-dimensional spacetime sections of the primed metric
(85) is thus that of non-gravitating matter of the kind discussed in §6.6. (The same result could

have been obtained by plugging the metric directly into egs. (63) for induced-matter density and
pressure.) A second coordinate transformation to double-primed coordinates:

t = ¢"sinht” | =¢" o =" cosht” | (89)

puts the metric into the new form:
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Spacetime sections of this double-primed metric are expanding FRW cosmologies, with k = +1
and R(t") = ¢" cosht”. The density and pressure of the accompanying perfect fluid, as obtained
from eqs. (63), are:

3

P = a0 YT &)

so that the effective equation of state is that of a pure vacuum.

Of the metrics (83), (85) and (90), which one is the best choice for a description of the real uni-
verse? None, of course, since none of them admits spacetime sections with realistic four-dimensional
properties. A metric which is adequate to this task is the cosmological one (68). It can be obtained
from Minkowski space (83) by transforming from ¢, r, 1 to t, 7, L/N) via:

o 2N 2 0 - o T. . - 1 (1-20)/a
"t 3 (1 * @)tl/awl/“"‘) - 30— _t*lz/)a/(lfa)_ |
o= p/egpt/0me)
v = 5 (1 - i){l/w}l/(la) o Jpgeaa] 0
2 o 2(1— 2a) | | :

and dropping the tildes [25]. The cosmological metric, as we have seen (§6.5), gives back good models
for the early (radiation) and late (dust) universe on spacetime sections ¢ = constant if « is chosen
appropriately.

The point of this exercise is that all four of the metrics (68), (83), (85) and (90) are flat in five
dimensions, although they would be perceived very differently by four-dimensional observers (as
evinced by their expansion factors and equations of state). The reason for these differences is the -
dependence of the coordinate transformations, and the fact that the theory is covariant with respect
to five-, not four-dimensional coordinates. To properly describe a given four-dimensional problem
in noncompactified theory, one needs to choose five-dimensional coordinates judiciously. This is not
a reflection of some fundamental ambiguity in the theory, but is rather forced on us as long as we

insist on retaining four-dimensional concepts like density and pressure in a five-dimensional theory
(see also §7.6).

6.8 Other Exact Solutions

Similar remarks apply to astrophysical situations. One has to choose five-dimensional coordinates
appropriate to each problem, if one wants to couch the results in terms of familiar four-dimensional
quantities. There is thus a rich field here for future inquiry. The one-body metric which has received
most attention so far is that of the soliton (77), which contains the four-dimensional Schwarzschild
solution on spacetime sections. As we saw in §6.6, however, the induced matter associated with
this metric is necessarily radiationlike (except in the Schwarzschild limit), and its density falls off
with distance rather steeply. To describe bodies with different properties, one must find new static
spherically-symmetric solutions of the field equations. This is possible in Kaluza-Klein theory because
Birkhoft’s theorem (which guarantees the uniqueness of the Schwarzschild solution in four dimensions)
no longer holds in higher dimensions [22], [184], [214], [226].
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One such solution has recently been found by Billyard & Wesson [186]. It is actually a modification
of the cosmological metric (68):

2(a+1)
d§2 = <L> '17/}2((1+3)/adt2 . (3 o 042)77D2d7"2 o w2T2dQ2

To
+3(3a 2 — 1)ridy? (93)

where rq is a constant and « is a parameter related to the properties of matter. On spacetime
hypersurfaces diy = 0 this metric is very similar to a four-dimensional one originally used to describe
inhomogeneous spheres of matter in static isothermal equilibrium [233]. With the aid of eqs. (63),
one finds that the associated induced matter has:

B (2 - a?) (aP+2a+2/3
P = 8rGB - a?)y2? p‘( 2 o2 )P : (94)

In addition, one can use the standard (Tolman-Whittaker) definition [234] of the gravitational
mass of a volume of fluid to obtain:

M, (r) = %W“/“ <:—U>2+ar0 . (95)

The object described by this metric has positive density for a? < 2, and positive mass (assuming
o # 0) for o > —1. So altogether one has a nonzero a between —1 and v/2, which allows for equations
of state (94) anywhere in the range —p/3 < p < p. These are potentially relevant to a wide variety
of astrophysical problems. But the fact that p and p are both proportional to =2, rather than ~ r—*
as for solitons, indicates that eq. (93) may be especially useful for modelling phenomena such as
galaxies, or clusters of them [235]-[237]. To go further one needs to rederive the classical tests of
general relativity for this metric, just as has been done for the soliton one (see §8). Some work has
been done in this direction in [186].

6.9 The Equations of Motion

Like the higher-dimensional field equations, the higher-dimensional equations of motion are also
modified when dependence is allowed on extra coordinates. In this section, in order to explicitly
include electromagnetic effects, we no longer restrict our choice of coordinates to those in which
A, = 0. The metric gap is given by eq. (5), with the addition of the e-factor to allow for timelike,
as well as spacelike 2. We then obtain the equations of motion by minimizing the five-dimensional
interval ds? = g pdax”dx®. This results in a five-dimensional version of the geodesic equation [172]:

d?z L pa dz® dz®
ds2 BC s d3

-0 (96)

with the five-dimensional Christoffel symbol defined as in eq. (4). The A = 4 component of eq. (96)
can be shown [172] to take the form:

dB . 1 BQCD d.’L‘C dTD

=5 97
45 2 0z' ds ds (97)

where B is a scalar function:
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In the case where g4 does not depend on z*, B is a constant of the motion (since dB/ds = 0),
but this is not generally so in noncompactified theory. The definition of B, together with the form of
the metric (5), allow us to express the five-dimensional interval in terms of the four-dimensional one
via ds = (1 — eB%/¢?)~'/?ds. Using this relation, the A = o components of eq. (96) can be shown
[172] to take the form:

de“+Fu dz® da® B pda”  kAMAB u}\%d_fl
ds?  ds ds 1o eBjgrl “ds B ds 0 9a' ds

eB? ¢ dB  do\ dx"

M S )y

+(1—582/¢2)¢3 [V o+ <B ds ds> ds]
- Magl\ﬂd_xyd_ﬁ
ozt ds ds

(99)

This is the fully general equation of motion in Kaluza-Klein theory, and for u = 1,2, 3 shows how
a test particle moves in ordinary space.

The left-hand side of eq. (99) is identical to that in Einstein’s theory; the terms on the right-hand
side are deviations from four-dimensional geodesic motion. In the case of no dependence on the extra
coordinate z*, the four terms in dB/ds and 9/0x* all vanish and we correctly recover the same result
obtained previously by those working in compactified Kaluza-Klein theory [238]-[240]. The terms in
the first set of square brackets depend on a nonvanishing electromagnetic potential A,, and the first
of these can be recognized as the Lorentz force if the charge-to-mass ratio of the test particle is:

@Q___ 5 (100)
M 1 —eB?/¢?

This relation, however, is only useful in the limit where the metric is independent of 2%, and its
extra-dimensional part is flat [172]. In coordinate frames where this is not the case, one cannot
readily identify quantities like mass or charge, which after all are four-dimensional concepts. The
same caution applies to the “scalar charge-to-mass ratio” given by:

Q/ B 682
M~ (1-eB2/¢?)d5 o

which can be identified analogously to the electromagnetic one from the multiplicative factor in front
of the second set of square brackets in eq. (99).

The 0-component of the geodesic equation (99), meanwhile, can be written [172] in a form analo-
gous to eq. (97) above:

i _ 10gon daC ds”
ds 2 029 ds ds

(102)

where C is a new scalar function:

_ 9oo eB?
= \/1 2 <1 - W) + KJBA() . (103)




Here v? = Agpv®0® is the square of the test particle’s spatial 3-velocity v* = da®/(,/gooldz’ +
(gon/g00)dx®]), with Aag = ga0gso/goo — gas @ suitable projector. If the metric gap were independent
of time 2° then C would be a constant of motion. Where this is not the case, as in cosmology, the
geodesic equation (99) could in principle be applied to test noncompactified theory. We return to
this question in §7.5. The possible physical significance of the quantity C is explored in more detail
in [172].

6.10 Physical Meaning of the Fifth Coordinate

We have noted that the charge of a test particle can be readily identified in the limit as ¢ = 2* =
constant. We have also found that a variety of realistic four-dimensional cosmological models and
one-body metrics can be identified as constant-y hypersurfaces of flat five-dimensional Minkowski
space. So far, then, it appears that useful coordinate systems can be specified by the condition
u' = dip/ds = 0. (This is perfectly legitimate from a mathematical point of view as the introduction
of a fifth coordinate into general relativity means an extra degree of freedom that can always be
used if one wishes to set a condition on u'.) However, we have not much improved on Kaluza’s
cylinder condition unless we confront the question: are there any physical reasons why we should
expect dy/ds = 07

In answering this one is obliged to interpret ¢ physically. We review here one such interpretation,
which has been advanced by Wesson and his collaborators [23], [25], [135], [168]. Noncompactified
theory in general (and elsewhere in this report, including the next two parts on experimental con-
straints) stands or falls quite independently of this additional work. The proposal we consider is that
the fifth coordinate 1) might be related to rest mass. The coordinate frame picked out by u* = 0 is
then just the one in which particle rest masses are constant. There are at least three independent
pieces of evidence (besides the empirical fact that rest masses are conserved!) in support of this
conjecture: (1) All of mechanics depends on base units of length, time and mass. So if the former
two can be treated as coordinates, then maybe the last should also. Dimensionally, 2* = Gm/c?
allows us to treat the rest mass m of a particle as a length coordinate, in analogy with 2° = ct. (2)
Metrics which do not depend on 2, like the soliton metric (77), can give rise only to induced matter
composed of photons; while those which depend on z*, like the cosmological metric (68), give back
equations of state for fluids composed of massive particles. (3) The metrics ds? = dT? — do? — d¥?
and d3? = %dt?> —do? —t*di)? are related by the coordinate transformations T = #2¢?/4+1n|(t/¢)'/?]
and W = 22 /4 — In[(t/1))"/?]. The former metric is flat, while the latter gives an action principle
¢ [ dt = 0 for particles at rest in ordinary space (do/ds = 0), viewed on hypersurfaces 1) = constant.
This action principle is formally the same as that of particle physics if ©» — m in the local, low-
velocity limit. (The same argument applies to cosmological metrics (68).) This view of the origin of
mass is similar to that in some quantum field theories [241], where rest masses are generated spon-
taneously in a conformally invariant theory that includes a scalar dilaton field or Nambu-Goldstone
boson in Minkowski space.

Several other, more philosophical reasons [23], [25] to consider the STM (“Space-Time-Matter”)
hypothesis that 1 might be related to m can perhaps be mentioned here: (4) A theory in which
mass is placed on the same footing as space and time will be naturally scale-invariant, simply by
virtue of being coordinate-invariant (because particle masses are a necessary part of any system of
units, or “scales”). The idea that nature might be scale-invariant has been considered from time to
time by such eminent thinkers as Dirac, Hoyle and others [23], [242]-[250]. (The STM approach is,
however, otherwise quite distinct from these theories, not least in the fact that it predicts a variation
in rest mass m rather than the dimension-transposing constant G.) (5) There is also a pleasing
symmetry in the elevation of G to the same status as ¢: as the latter puts distances into temporal
units, so the former is needed to do the same for masses. The actual conversion factors are 1/¢ and
G /c* respectively, and this helps explain why any change in mass with time - a generic feature of
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scale-invariant theories - has been so small as to have escaped detection so far: the latter factor
is some 43 orders of magnitude smaller than the former, and the former is already tiny enough to
have made special relativistic effects unnoticeable until the second half of this century. (6) Finally,
we note that if 2* is not restricted to be lengthlike (or timelike) in nature, then the extra part
of the metric can have either sign without running afoul of closed timelike curves and causality
problems (§6.1). We will not consider the STM theory further in this report, noting however that its
observational implications have been studied over the years by Wesson [19], [136]-[139] and numerous
others [140]-[148], [149]-[158], [159]-[163].

7 Cosmology

7.1 Compactified Kaluza-Klein Cosmology

Cosmological aspects of compactified Kaluza-Klein theory have received less attention than those
related to particle physics [12]. Where they have been addressed [7], [13], much of the discussion
has focused on the search for exact solutions of higher-dimensional general relativity (or extended
gravity theories) which contain the familiar FRW universes on spacetime-like sections. This was first
done in five dimensions (with no extra-dimensional matter) by Chodos & Detweiler [222] in 1980,
and extended to ten- and eleven-dimensional supergravities (with appropriate higher-dimensional
matter tensors) by Freund [253]. The key feature of these and subsequent models [254]-[260], [261]-
[267] was that extra dimensions could (and in some cases necessarily would) shrink as the spatial
ones expanded, thus lending support to the whole notion of compactification. (The possibility that
compact subspaces could “bounce back” from a contracting phase was also investigated [268], [269].)
This approach to explaining why the universe appears four-dimensional is sometimes referred to as
“dynamical” or “cosmological” dimensional reduction. Non-compactified theory can exhibit the same
behaviour, as noted in §6.4 and §8.10.

In more than five dimensions, compactification requires either explicit matter terms or modifica-
tions to the Einstein equations (§4.4). All kinds of matter have been invoked to induce cosmological
compactification (usually in addition to that already required for spontaneous compactification; eg.,
as in supergravity [253], [256]-[258]). There are theories with dilaton fields [258], quantized five-
dimensional scalar fields [259], a D-dimensional gas of non-interacting scalar particles [260], general
higher-dimensional perfect fluids [256], [261]-[264], D-dimensional radiation [265], five-dimensional
dust [266], and scalar fields in nonlinear sigma models [267]. Cosmological compactification mecha-
nisms based on modifications of Einstein’s theory of gravity are just as colorful, employing quadratic
[270], [271], cubic [272], and even quartic terms [273] in the curvature, both generally and in spe-
cial combinations known variously as Gauss-Bonnet terms [255], [265], [274], [275], Lanczos terms
[276], Lovelock terms [273], [277], Euler-Poincaré densities [278], and dimensionally continued Euler
forms [279], [280]. Even changes of metric signature [281] have been considered as instruments of
compactification. An exhaustive survey and classification of generalized higher-dimensional vacuum
cosmologies has recently been carried out by Coley [175].

An important step in Kaluza-Klein cosmology was the demonstration that shrinking extra dimen-
sions could transfer entropy into the four-dimensional universe, providing a new way to solve the
horizon and flatness problems [221], [282], although many (~ 40) extra dimensions were required
[283]. Inflation itself has also been incorporated directly in compactified Kaluza-Klein theories [284],
[285], and indeed “Kaluza-Klein inflation” has burgeoned into a sub-field of its own [286]. It is difficult
to obtain in some supergravity [256] and most superstring [287] theories, and again requires in general
that either additional matter terms [284] or higher-derivative corrections [285] be added to Einstein’s
theory. Examples of the former include higher-dimensional dust [288], scalar fields with conformal
transformations of the metric [64], [289] or non-minimal couplings to the curvature [290], generalized
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perfect fluids [291], [292], and others [293]. Examples of the latter include higher-derivative correc-
tions to Einstein’s equations [294], [295], Gauss-Bonnet terms [274], [281], and Euler forms [280].
Inflation has also been obtained with multiple compact subspaces [296] and explicit “chaotic infla-
ton” fields [297]. Other inflationary Kaluza-Klein cosmologies include versions of extended inflation
[298] and STM theory [147]. An exciting recent development is the use of COBE measurements of
microwave background anisotropy to put experimental limits - surprisingly restrictive ones in some
cases - on inflationary Kaluza-Klein models [299]-[302].

Cosmological constraints on compactified Kaluza-Klein theories apart from those relating to in-
flation in the early universe have also received attention, beginning with Marciano’s observation
[303] that time-variation in the scale of extra dimensions would have important consequences for
the fundamental constants of four-dimensional physics. Implications of the same phenomenon for
primordial nucleosynthesis [304] and nuclear resonance levels in carbon and oxygen atoms [305] have
also been discussed. If the extra dimensions are spatial in nature, these arguments imply that the
present rate of change in their mean radius is less than about 10~ '"yr~'. Another interesting idea is
to use observations of gravitational waves to constrain Kaluza-Klein cosmologies; this however turns
out to be impractical at the present time [306]. Other issues in compactified Kaluza-Klein cosmology
include the possibility of excessive contributions to the global energy density from massive Fourier
modes [13], [307] and solitons [13], [308] (see also §8.4), gravitational effects due to massless scalar
components of the compactified higher-dimensional metric [309], and the stability of solutions with
respect to classical perturbations [310], chaotic behaviour [311], and quantum effects [212], [268],
[312]. Inhomogeneous Kaluza-Klein cosmologies have been considered in [313].

7.2 The Equation of State

Compactified Kaluza-Klein cosmology, as described above, is characterized by a profusion of compet-
ing expressions for the energy-momentum tensor Tup in higher dimensions, reflecting the fact that
there is no consensus on how to define “higher-dimensional matter.” In noncompactified cosmology,
by contrast, one avoids this ambiguity with the natural and economical assumption that Tup = 0;
that is, that the universe in higher dimensions is empty.

This cannot be done in compactified theory because the cylinder condition imposes uncomfortable
restrictions on the resulting equation of state (and other properties of matter) in four dimensions.
Consider as a simple example the uniform five-dimensional line element (65) with v = 0, w = Int,
and p = —Int:

ds® = dt* — tdo® —t 'dy® (104)

where do? = da? + dy? + dz? is shorthand for the spatial part of the metric. This would be an
acceptable solution in compactified cosmology in that its constant-1 sections are FRW, none of the
metric coefficients depend on v, and the extra coordinate shrinks with time. Indeed its spatial part
grows in exactly the same way as that of a four-dimensional FRW model with the radiation equation
of state, p = p/3. And in fact, in the induced-matter interpretation, this metric literally does describe
radiation. That is, putting eq. (104) into the five-dimensional vacuum field equations é’AB = 0 gives

back the four-dimensional ones G5 = 871,45, where T4 is the energy-momentum tensor of a perfect
fluid with:

: (105)

3 p
P 3
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as can be shown explicitly using eqs. (63). (Units are such that G = ¢ = 1 throughout §7, except
where otherwise noted.) These are the same expressions as those used to describe the radiation era
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in (flat) four-dimensional cosmology [168]. In fact, unless five-dimensional matter is put in to begin
with, this metric is incapable of manifesting itself as anything but electromagnetic radiation in four
dimensions (§6.3).

In noncompactified cosmology, by contrast, one can describe the universe at any stage of its history
without higher-dimensional matter (or modifications to the higher-dimensional field equations). As
discussed in §6.5, the best metric for this purpose is the “cosmological metric” (68). Consider first
the case a = 2, which looks like:

d3® = 2dt* — ty2do> — A2dy? . (106)

This line element again has FRW-like constant-i sections, and gives exactly the same expressions
for induced density and pressure as eqs. (105) above, provided that the unphysical coordinate label ¢
is replaced by the proper time ¢t. So it again describes a radiation-dominated universe, or one filled
with relativistic particles such as neutrinos. This time, however, the metric coefficients depend on
1, and the fifth dimension grows with time. Solutions of this type tend to be discarded in particle
physics, where the assumed lengthlike nature of the extra coordinates constrains them to be very
small at the present time [55]. Here we make no a priori assumptions about the physical nature of
extra dimensions. This allows us to obtain more general kinds of cosmological matter [167], [168].
In the case aw = 3/2, for instance, the same metric (68) reads:

ds® = p2dt? — "3y do? — 9t dy? | (107)
which, from eqs. (70), represents matter with induced density and pressure:

! 0 108

P = W I ) (108)

and therefore describes a dust-filled universe. One can also model inflation (in flat FRW models) by

choosing 0 < a < 1. Provided one is willing to tolerate a dependence on the extra coordinate, then,

and a non-lengthlike interpretation of its physical nature, one can describe the universe at any stage

of its history as a manifestation of pure geometry in five dimensions. In every case, the parameters

p and p appear as products of an underlying geometric theory, and the equation of state manifests

itself as a consequence of the field equations. This is more satisfying than the usual situation in

(four-dimensional) cosmology, where pressure and density have merely phenomenological status and
the equation of state must be put into the theory by hand.

7.3 Extension to k # 0 Cosmologies

The cosmological metric (68), and the others mentioned in §6.5, are all five-dimensional generaliza-
tions of spatially flat four-dimensional FRW spacetimes. One could also consider a curved version of
the homogeneous and isotropic line element (65):

2

7

1 kr?

ds* = e’ dt* — e‘”( + r2d92> —eldiy? . (109)

McManus [174] has investigated solutions of the vacuum Einstein equations (2) with this form.
Like Ponce de Leon [145], he assumed that v, w and pu were separable functions, as given by eq.
(66), with T'(t) = Z(¢) = constant. He found four solutions with k& # 0, each associated with a
well-defined induced-matter equation of state. We list his final results here. In the first solution,
X (¢) and Y (¢) are constant as well as Z(v), and the line element reads:
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dy® (110)
where dx? = [(1 — kr?)~'dr? + r?dQ?] is new shorthand for the spatial part of the metric and £ and

n are arbitrary constants. Since none of the metric coefficients depend on v, the equation of state is
that of radiation:

3(£2 + 4kn) p
= == 111
P 32m(—kt2+ &t +1n)? P=3 (111)
This solution was originally discussed by Davidson et al. [254]. The second solution reads:
o (kY +€/2)
dsQ:(—dtQ—kQ—l- +n)dx* — dy?® 112
W ey oy Ry — dy (112)
and has:
3k p
_ : = _C 113
P sk +ep+n) T3 (113)

This is the equation of state of “nongravitating matter” discussed in §6.6. The same equation of
state characterizes the third solution:

1
42 — di? — Z752(67,0 ~ ke )2dy? — 2dy? | (114)
which has:

31
872 (tanh ¢)2

p (115)

Finally, McManus’ fourth solution is given by:

1
d5* = 2dt? — J0?(e! + ke !Pdy? —dy? (116)
with:
3
0 — 11
P= gt PP (117)

This is the equation of state of a vacuum.

Liu & Wesson [173] have extended the search to non-separable k # 0 solutions (109). Instead of
eq. (66), they assume metric coefficients of the form:

e = L2t — Mp) . e =DMN(t— M), e =NA(t— M), (118)

where L, M and N are wavelike functions of the argument (¢ — A¢), with A acting as a “wave
number.” Their solutions turn out to be determined by two relations:
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where L (or M) must be supplied, and ¢ and & are integration constants. With L, M and N specified
in this way, the induced-matter energy-momentum tensor can be calculated, and the density and
pressure of the cosmological induced matter found. If one supposes, for example, that x = 0 and
M = LBD/2 with v a new constant, then one obtains a perfect fluid with:

3¢2N?
P = S Lits p="p - (120)
In this case the metric (109) reads:
2 L o 1909 N k 2
ds® = L1+3’7dt — L X — m — ? d'{/} s (121)

where L(t — M) plays the role of the cosmological scale factor, obeying the field equation:

oo

L1437 [2+6y

L? + (122)

This solution can be used to describe, for example, the matter-dominated era (y = 0) or the
radiation-dominated one (v = 1/3). The properties of this model are discussed in more detail in
[173]. The fact that the scale factor depends on v as well as t is particularly interesting, and implies
that observers with different values of ¢ would disagree on the time elapsed since the big bang;
that is, on the age of the universe. Rather than being a single event, in fact, the big bang in this
picture resembles a sort of shock wave propagating along the fifth dimension. This effect could in
principle allow one to constrain the theory using observational data on the age spread of objects such
as globular clusters [315]-[317]. This has yet to be investigated in detail.

7.4 Newton’s Law, the Continuity Equation, and Horizon Size

Besides the equation of state, there are two other important laws relating p and p in cosmology; and
it is natural to ask whether or not they are automatically satisfied by the induced-matter fluid. These
are the continuity (or mass conservation) equation, or equivalently the first law of thermodynamics
dE + pdV = 0 (where F is energy and V is the three-dimensional volume); and the equation of
motion (or geodesic equation). The former can be written:

0 0

— (pR*) + p==(R*) =0 . 123

T (PF) + () (123)
The latter is in general quite complicated (see §6.9), and we defer discussion of the noncomoving

case to the next section. For matter which is comoving with a uniform fluid, however, only the radial

direction is of interest and the equation of motion is just Newton’s law:

#2R M
= M=
or? ~  R?

W W=

TR (p+3p) (124)



where we have used gravitational, rather than inertial mass, as pressure can be significant in cosmo-
logical problems [314]. In these equations one must be careful to use proper time 7' = [ e’/?dt and
distance R = [ e“/?dr rather than the “raw coordinates” t and r (where 72 = 22 412 + 2% is comoving
radial distance). For the cosmological metric (68) one has just T = ot and R = t*/y/(1=®)p and
it is straightforward to show, using eqgs. (70) for p and p, that the conservation equation (123) and
equation of motion (124) are both satisfied [167]. In fact, the same thing is true for any spatially-flat
perfect-fluid cosmology induced in this way by five-dimensional geometry [168]. As far as Newton’s
law and the continuity equation are concerned, then, noncompactified Kaluza-Klein cosmology is
indistinguishable from standard cosmology. To the extent that these laws depend on the field equa-
tions, this is not surprising, since the five-dimensional field equations @ag = 0 contain exactly the
same information as the usual four-dimensional ones G5 = 8771 ,3.

There are, however, effects which depend on the metric but not the field equations, and the
noncompactified versions of these will in general show departures from standard cosmology. The size
of the particle horizon, for example, can be computed directly from the line element (assuming a null
geodesic, ds? = 0). For the above “dust-like” metric (107), it reads:

to 241/2
23 9 o [ dy dt

This is just the usual (four-dimensional) expression, plus a term in (dt/dt). (This term necessarily
acts to reduce the size of the particle horizon because the extra dimension of the cosmological metric
(68) is spacelike.) Similar results are found for the “radiation” metrics (106) and (104) above [168].
The value of the derivative (di/dt) can be evaluated with the help of the full geodesic equation, to
which we turn next.

7.5 The Equation of Motion

The general equation of motion, or geodesic equation (99), is also a metric-based relation and will
contain nonstandard terms if the fifth dimension is real. Since the cosmological fluid is neutral, we
disregard electromagnetic terms. The spatial components (u = 4, with i = 1,2, 3) of eq. (99) then
read:

Az’ . dx® daP eB? ‘ pdB  dp) da'
A — A\VA L Ty —
a7 g ds (1 —582/¢2)¢3[ o+ (B ds ds) ds}
gy, da¥ dat
s —— 126
ozt ds dx (126)

where B is as given in eq. (98). We then define a five-velocity 04 = dx?/ds, which is related to
the usual four-velocity v® = dx®/ds by v* = (d§/ds)0®. Using the cosmological metric (68), one
can show that, for objects which are comoving with the cosmological fluid (¢’ = 0), all terms on
the right-hand side of eq. (126) vanish [172]. Comoving objects, in other words, satisfy the spatial
components of the five-dimensional geodesic equation in exactly the same way as in the standard
four-dimensional theory. This echoes the result obtained above for Newton’s law.

For noncomoving objects, however, the right-hand side of eq. (126) will in general contain nonzero
terms involving the spatial velocities, the extra part of the metric, and derivatives of the metric
coefficients with respect to the extra coordinate. From the viewpoint of four-dimensional general
relativity such terms would appear as violations of the weak equivalence principle or manifestations
of a “fifth force” [188], [214], [226]. To put this in practical terms, eq. (126) tells us that galaxies with
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large peculiar velocities will not necessarily travel along four-dimensional geodesics. Observations
of the peculiar motions of galaxies (and groups and clusters of them) are now becoming available
[318]-[323], and in principle these can be used to discriminate between noncompactified Kaluza-Klein
theory and ordinary general relativity [172], although this has yet to be investigated in detail. Similar
considerations will apply to the dynamics of charged test particles such as cosmic rays, for which the
electromagnetic terms in eq. (99) would need to be included.

We turn next to the 0- and 4-components of the geodesic equation (99). With comoving spatial
coordinates (¢° = 0) one finds, using the metric (68):

0 44
- - 0

d§+wvv +(1—a)2 FU U ;

dvt (1 =)’ ¢ 5.0, 2 o4

TR Tl + SO0 = 0 . (127)

A solution of these must be compatible with the metric itself, which imposes the condition:

2
NP @ a4 A
25000 — 727521)41)4 =1 . (128)

(- a)

From eqs. (127) and (128) the 0- and 4-components of the five-velocity are found [170] to be:

~0 T (0% 1 ~4 + (]_ — 04)2 1 (129)
0 =F——— , U =t———t= .
V2a — 19 av2a—1t
The ratio of these gives us the rate of change with time of the extra coordinate (di/dt = ©*/0°),
and this is easily integrated to yield:

o) = (@)A , (130)

t

where , is an integration constant and A = (1 — a)?*/a?. For a = 2 (the radiation-dominated era),
A = 0.25; while for « = 3/2 (the matter-dominated era), A ~ 0.11. The relative rate of change of
the extra coordinate is:

dojdt A (131)

WY t
and this is comfortably small in either case at late times. (This is also true in the STM interpretation,
where 1 is related to rest mass; we return to this in the next section.) The small size of di/dt means
that the horizon sizes discussed in the last section will be close to those in standard cosmology. The
discrepancies are, however, necessarily nonzero if the spatial coordinates are chosen to be comoving.

7.6 Cosmological Implications of General Covariance

In the previous section we worked entirely in coordinates defined by the cosmological metric (68).
We are of course free to transform to coordinates in which the spatial components of the five-velocity
are not comoving. For example, we can switch from ¢, r, ¢ to ¢, ' and ¢’, where:

=ty , =tV | =AY . (132)
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In terms of these new coordinates, the density and pressure of the cosmological fluid are no longer
given by eqgs. (70) but by:

3 2

pzm ’ p:<?1>ﬂ : (133)

These are identical to the expressions in standard early (o = 2) and late (o = 3/2) cosmology.

Also, since the metric transforms as a tensor, §’? = (92'4/02°)(02'8 /0xP)§P, we have the result

that ¢°° = (2 — 1)/a? = constant, which implies that in the new coordinates (132) there is a

universal or cosmic time. Similarly, using the vector transformation law ¢'* = (92’ /025)0%, we
find that the new components of the five-velocity are:

V2a =1 1
GRS e L A gy Ly B (134)

« -7 V2a — 11

The 0-component of the test particle velocity (which in four-dimensional theory is related to its
energy) is constant. The first component is proportional to 7/, which represents a version of Hubble’s
law. And the fourth component vanishes. Taken together, the above observations tell us that the
new coordinates defined by eq. (132) - the ones in which 0* = di)/ds = 0 - are just the ones which
give back standard cosmology. In a fully covariant five-dimensional theory, there can be no a priori
reason to prefer coordinates in which ©* = 0 over those in which ©* # 0. It is a matter for experiment
to decide. As emphasized in §6.7, the choice between the coordinates defined by the metric (68) and
those defined by (132) is not arbitrary - not as long as the laws of physics are written in terms of
four-dimensional concepts like density, pressure, and comoving four-velocity [23], [170]. To decide
whether or not the coordinates of the last section are appropriate to describe the “real world,” one
must look for the effects associated with them, like the nongeodesic motion of galaxies with large
peculiar velocities.

Another promising possibility arises if one can interpret the fifth dimension physically, since eq.
(131) shows explicitly how it will change with time. In particular, in the context of STM theory,
where 1) is related to particle rest mass, this equation implies a slow variation in rest mass with time:

m__A (135)

Putting A ~ 0.11 for the matter-dominated era and ¢ ~ 15 x 10° yr for the present epoch, we
obtain a value of m/m = —7 x 10~ *2yr~1. This is marginally consistent with ranging data from the
Viking space probe to Mars, where errors are reported as £4 x 10~ "2yr ', and £10 x 10~ 2yr "
and quite consistent with timing data for the binary pulsar 1913+16, where errors are reported as
+11 x 10~ 2yr~" [170], [197]. If the STM hypothesis is valid, these data tell us that observation is
close to settling the question of whether cosmology is using coordinates with ©* = 0 or ones with
01 # 0.

It may seem unusual that physical effects can depend on the reference frame in which one observes
them. In fully covariant Kaluza-Klein theory this is a necessary consequence of trying to measure a
higher-dimensional universe with four-dimensional tools. Perhaps the most graphic example of this
is the big bang itself. As demonstrated in §6.7, the cosmological metric (68) is five-dimensionally
flat. The universe may therefore be far simpler than previously suspected, in that it may have zero
curvature. What then of the big bang singularity, the Hubble expansion, the microwave background,
and primordial nucleosynthesis? In noncompactified Kaluza-Klein cosmology, these phenomena,
which are all defined in four-dimensional terms, are in a sense recognized as geometrical illusions -
artifacts of a choice of coordinates in the higher-dimensional world [169]. Something like this occurs
even in four-dimensional general relativity when one works with comoving spatial coordinates, in
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which galaxies remain forever apart and there is no initial singularity [170]. Relativity is founded on
the idea that there should be no preferred coordinate systems; yet in spatially comoving frames there
is no big bang. This paradox has no resolution within Einstein’s theory, which must consequently
be seen as incomplete. In practice, one usually regards the comoving coordinates as useful but “not
real.” Noncompactified Kaluza-Klein theory gives us a new way to think about these issues in terms
of general covariance in higher dimensions.

8 Astrophysics

8.1 Kaluza-Klein Solitons

To model astrophysical phenomena like the Sun or other stars in Kaluza-Klein theory, one must
extend the spherically-symmetric Schwarzschild solution of general relativity to higher dimensions.
Birkhoff’s theorem guarantees that the four-dimensional Schwarzschild metric is both static and
unique to within its single free parameter (the mass of the central object). This theorem, however,
does not hold in higher dimensions, where solutions that are spherically-symmetric (in three or more
spatial dimensions) depend in general on a number of parameters (such as electric and scalar charge)
besides mass, and can in some cases be time-dependent as well. Unlike four-dimensional stationary
solutions, some can also be nonsingular [226], [324], [325]. Such localized solutions of finite energy
can legitimately be called “solitons” in the same broad sense used elsewhere in physics [326]. In fact,
some workers [180], [182], [185], [191], [192] have found it convenient to apply this term to the entire
class of higher-dimensional generalizations of the Schwarzschild metric with finite energy (including
those which, technically speaking, do contain geometrical singularities). We follow this convention
here.

Kaluza-Klein solitons (in this general sense) were noted as early as 1951 by Heckmann, Jordan &
Fricke [327], who found several solutions of the five-dimensional vacuum Einstein equations that were
stationary and spherically-symmetric in three-space. Kiithnel & Schmutzer [328] carried the problem
further in 1961, studying for the first time the motion of test particles in the field of the central
mass. (Tangherlini [329] used the alleged instability of such “generalized Keplerian orbits” to argue
that there were only three spatial dimensions.) This crucial aspect of Kaluza-Klein theory has been
re-examined over the years by several other authors [226], [239], [240], [330], and provides one of the
most promising ways to constrain it observationally. We will return to it below.

The first systematic studies of stationary Kaluza-Klein solutions with spherical symmetry ap-
peared in 1982 with the work of Chodos & Detweiler [228] and Dobiasch & Maison [331]. The former
authors obtained a class of five-dimensional solutions characterized by three parameters (mass plus
electric and scalar charge) and emphasized the important point that solitons are generic to Kaluza-
Klein theory in the same way that black holes are to ordinary general relativity. This is what makes
them so important in confronting the theory with experiment. The latter authors worked in D
dimensions (although the internal space was restricted to be flat) and their solutions accordingly
possess four or more parameters. Various aspects of Chodos-Detweiler and Dobiasch-Maison solitons
have been studied in [215], [332].

The physical properties of five-dimensional solitons with zero electric charge were first described
in detail by Sorkin [225], Gross & Perry [226], and Davidson & Owen [227], whose solutions (given
by eq. (77) in the notation of [227]) are characterized by two parameters. Although these latter
authors (along with many others) describe their solutions as “black holes,” it is important to note
that in some cases the objects being considered are naked singularities [332], or have singular event
horizons [215], [333]. The term “monopole” is also potentially misleading since more complicated
solitons can, for example, take the form of dipoles [226]. For these reasons we prefer to stay with the
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broader term “solitons” in this report.

The Chodos-Detweiler metric was generalized by Gibbons & Wiltshire [334] to include extra
nondiagonal terms, introducing a fourth parameter (associated with magnetic charge). These authors
also considered the thermodynamics of Kaluza-Klein solitons for the first time. Myers & Perry [335]
then extended the discussion to D-dimensional solitons with spherical symmetry in (D — 1), rather
than three spatial dimensions, which allowed them to obtain Kaluza-Klein versions of the Reissner-
Nordstrom and Kerr metrics, as well as the Schwarzschild one. The thermodynamical properties
of these objects, especially in six and ten dimensions, were examined by Accetta & Gleiser [336].
Myers [337] considered solitons which were not asymptotically Minkowskian. And Yoshimura [166]
took the bold step of allowing dependence of his solutions (albeit only the (D — 4)-dimensional part)
on extra dimensions. Others have studied the stability of soliton solutions with respect to classical
perturbations [338]-[340] and quantum effects [341].

All this work was done in a higher-dimensional vacuum; that is, with no explicit higher-dimensional
matter. But most compactified Kaluza-Klein theories, as we have seen, operate in curved higher-
dimensional spaces and require such matter (or other modifications of the Einstein equations) to
ensure proper compactification, among other things. This is just as true for soliton solutions as
cosmological ones. Non-Abelian solitons have accordingly been constructed by many authors using,
for example, the Freund-Rubin fields of D = 11 supergravity [342], suitably defined six-dimensional
[343] or seven-dimensional matter fields [344], and various D-dimensional scalar fields [345]-[350].
Others have preferred to stay in a higher-dimensional vacuum, opting for higher-derivative corrections
to the Einstein equations, including (quadratic) Gauss-Bonnet [351] and cubic [352] curvature terms;
or for modifications of the Kaluza-Klein mechanism such as “local compactification” [353].

8.2 Are Solitons Black Holes?

The rest of this report is concerned with solitons of the five-dimensional Gross-Perry-Davidson-
Owen-Sorkin (GPDOS) type [225]-[227], with the line element (77) in the notation of Davidson
& Owen. Other spherically-symmetric static solutions, like the class found by Billyard & Wesson
[186], and those with more than two independent parameters [193], [194], are subjects for future
research. Insofar as the metric coefficients of eq. (77) do not depend on the fifth coordinate, the
distinction between compactified and noncompactified approaches is not an issue here. It would,
however, become crucial in higher-dimensional generalizations of what follows. We will interpret
the four-dimensional properties of Kaluza-Klein solitons as induced by the geometry of empty five-
dimensional space [20] in the manner of §6.3. When D > 5 this requires either a noncompactified
approach, or modifications to the field equations, as described at the end of the last section.

The first question to address is whether GPDOS solitons in the induced-matter interpretation can
rightly be considered black holes. The two classes of object are alike in one important respect: they
contain a curvature singularity at the center of ordinary three-space. However: (1) solitons do not
have an event horizon (not as understood in ordinary general relativity, at any rate); and (2) they
have an extended matter distribution, rather than having all their mass compressed into the central
singularity. In this section we try to clarify these properties, which make the term “black hole” an
inappropriate one in the context of induced-matter Kaluza-Klein theory.

To begin with, it is apparent from the spatial components of the metric (77) that the center of
the 3-geometry is at r = 1/a and not v = 0. The surface area of 2-shells varies as (ar — 1)! k=1,
and this shrinks to zero at r = 1/a, given that £ > 0 (as required above for positive density),
and that the consistency relation (76) holds. The point r = 0 is, in fact, not even part of the
manifold, which ends at r = 1/a. That this spatial center marks the location of a bona fide curvature
singularity, and not merely a coordinate one, may be verified by evaluating the appropriate invariant
geometric scalars. The square of the five-dimensional Riemann-Christoffel tensor (or Kretschmann
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scalar K = Ragcp , for example, reads in isotropic coordinates [182]:
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and this is manifestly divergent at r = 1/a (with £ > 0). (In the Schwarzschild limit this expression
simplifies to K = 192a'97%(ar +1)7'2, which is formally the same as that in four-dimensional Einstein
theory. This however has little significance from the Kaluza-Klein point of view since the point
r = —1/a is not in the manifold.) The relevant four-dimensional curvature invariant is the square of
the Ricci tensor, C' = R,s R, and this comes out as [182]:

o - 8e%a'Vr® ar — 1
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which is also manifestly divergent at the center of the soliton, r = 1/a.

For black holes in general relativity, the event horizon is commonly defined in general coordinates
as the surface where the norm of the timelike Killing vector vanishes. In our case the Killing vector
is just (1,0,0,0) so its norm vanishes where goo does. For the soliton metric (77) this happens at
r — 1/a, given that £ > 0 and ¢ > 0 (we will find below that physicality requires both these
conditions). For physical solitons, in other words, the event horizon shrinks to a point at the center
of ordinary space. Kaluza-Klein solitons must therefore be classified as naked singularities, as noticed
previously by several authors [142], [215], [333], [348]. According to the cosmic censorship hypothesis,
such objects should not be realized in nature. The relevance of this (essentially four-dimensional)
postulate to five-dimensional objects may, however, be debated. In any case we will show below that
if they exist, they could be detectable by conventional astrophysical techniques.

What of the soliton’s mass distribution? Applying the standard definition [234] and using the
soliton metric (77), one finds [182]:

Mg(r):@<aT_1>e . (138)

a \ar+1

(G = ¢ = 1 throughout §8 unless otherwise noted.) This is the gravitational (or Tolman-
Whittaker) mass of a Kaluza-Klein soliton as a function of (isotropic) radius 7. Other commonly-used
definitions of mass can be evaluated [182] but do not lend themselves readily to physical interpre-
tation. For positive mass (as measured at infinity) one must have ek > 0. Since positive density
requires in addition that £ > 0, it is apparent that both k and € must be positive for realistic solitons.
Eq. (138) therefore implies that the gravitational mass of the soliton goes to zero at the center -
behaviour which differs radically from that exhibited by black holes. Rather than being concentrated
into a pointlike singularity, the mass of the soliton is distributed in an extended fashion (although
the ~ 1/r*-dependence of density noted above means that this distribution is still a sharply peaked
one).

The soliton defined by the Schwarzschild limit is, however, special in this regard. If one simply
takes the Schwarzschild values € = 0, ek = 1 and puts them directly into eq. (138), one finds that
M,y(r) = 2/a = constant for all r. Replacing the parameter a via M, = 2/a and putting this into

47



the metric, eq. (77), one recovers on spacetime sections the four-dimensional Schwarzschild solution
(78), with “Schwarzschild mass” M,. Alternatively, however, one might keep € arbitrarily small and
allow r — 1/a. In this case one finds that M,(r) — 0 irrespective of e. In other words, there
is an ambiguity in the limit by which one is supposed to recover the Schwarzschild solution from
the soliton metric. The problem is reminiscent of one investigated by Janis, Newman & Winicour
[354], [355] and others [347], [356], [357], in which the presence of a scalar field in four-dimensional
general relativity led to ambiguity in defining the center of the geometry. In their case perturbation
analysis led to a satisfactory resolution of the problem (in which the Schwarzschild “horizon” at
r = 2M, turned out to be a point). Adopting the same approach, Wesson & Ponce de Leon [182]
have conducted a numerical study of eq. (138), and this leads unambiguously to the conclusion that
in the Schwarzschild limit (as defined by k& — oo and € — 0) the mass does go to zero at r = 1/a.
The picture that emerges from this numerical work is of an extended cloud of matter whose mass
distribution becomes more and more compressed near its center as the parameters € and k approach
their Schwarzschild values. Due to the nature of the geometry, however, the enclosed gravitational
mass at the center is always zero.

8.3 Extension to the Time-Dependent Case

The results of the last section make it clear that Kaluza-Klein solitons, although they contain sin-
gularities at their centers, are not black holes, since they have neither pointlike mass distributions
nor event horizons of the conventional type. A third crucial difference between these two classes
of objects, which follows from the fact that Birkhoff’s theorem does not hold in five dimensions, is
that soliton metrics can be generalized to include time-dependence. This goes somewhat against the
idea of a soliton as a static solution of the field equations. However, it is reasonable to suppose that
solitons, if they exist, must have been formed in some astrophysical or cosmological process during
which they could not have been entirely static. So it is of physical, as well as mathematical interest
to study the extension to time-dependent solutions.

Liu, Wesson & Ponce de Leon [192] have considered the case in which the coefficients v, w and pu
of the general spherically-symmetric metric (65) depend not only on the radial coordinate r (as in
the GPDOS solution (77)), but on ¢ as well. The metric coefficients are still assumed to be separable
functions, so that eqs. (6.6) are in effect replaced by:

e’ = A*(r)T*(t) , e =B(r\Ut) , e'=C*(r)V3(t) . (139)

The field equations then produce two sets of differential equations, for which four classes of solu-
tions have been identified. We list these here, with brief comments. All the solutions have T'(t) =
constant. The first class has U(t) = constant as well, along with A(r) = C(r), and looks like:

di? = A%(r)dt? — B*(r)do® — A2(r)VE(H)dy? (140)

where do? = dr? 4+ r2d)? as usual, and V (¢) can have either an oscillating form V () = cos(wt + ) or
an exponentially varying one V(t) = exp(£Ht) (the parameters ¢ and H are arbitrary constants).
The four-dimensional parts of these solutions are static, and only the extra-dimensional part varies
with time. In the case of the decaying exponential solution, the time-dependent soliton tends toward
a static one as t > H '

The second class of solutions has V(t) = U~!(t) and C(r) = A~Y/2(r), and can be written in the
form:

ds® = A*(r)dt* — U*(t)B*(r)do® — U 2(t)A ' (r)dy? | (141)
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where U (t) satisfies a differential equation exactly analogous to one in standard FRW cosmology, and
is given by U(t) = /¢ + Ht — kt? (with k = £1, 0 playing the role of a curvature constant). This is
the most interesting of the time-dependent soliton solutions, and has been looked at separately by
Wesson, Liu & Lim [191]. The functions A(r) and B(r) can, for instance, be taken to be the same
as those of the static soliton, eqs. (75). The parameters ¢ and k obey the consistency relation (76)
as before, and here take the values 1/\/§ and 2 respectively. Choosing in addition ¢ =1 and k = 0
for convenience, the metric (141) becomes:

1 4/V3 2,2 _ 1\ 2 1 2/V3
432 = (“T ) dt2—<a L )(C”"Jr ) (14 Ht)do”

ar +1 a‘r ar — 1
1\ V3
<Z:“_L1> (1+ Ht) 'dy? . (142)

In the induced-matter interpretation this geometry manifests itself in four dimensions as matter
with anisotropic pressure. Using the same technique as in §6.6 (identifying the pressure three-tensor

p{ and defining p = p!/3), one can nevertheless derive a unique equation of state. This turns out to
be [191]:

B aSr? ar —1 2/\/§+ 3H? ar +1 ivs
P 3n(1+ Ht)(a®r* —1)* \ar +1 327(1+ Ht)? \ar — 1
p = p/3 . (143)

The matter comprising this time-dependent soliton satisfies the the relativistic equation of state,
as expected since the metric coefficients are all independent of ¢. What is interesting about this
solution (142) is that it reduces to the radiation-dominated cosmological metric (104) in the limit
of zero central mass a — oo (ie., M, — 0). So what began as a metric suitable for astrophysical
problems may have cosmological applications, perhaps for modelling solitons in the early universe
[191].

The third class of solutions found in [192] has A(r) = constant and U(t) = V(¢) = 1 + Ht, and
reads:

ds® = dt* — (1 + Ht)* | B*(r)do® + C*(r)dy?*| . (144)
For these solitons the fifth dimension is expanding along with the three-dimensional spatial part.

The fourth class of solutions, finally, also has U(t) = 1+ Ht, but uses V(¢t) = U*(t) and C(r) =
[A(r)]H+2/=D  where £ is another arbitrary constant. The associated line element looks like:

ds* = A%(r)dt* — (1 + Ht)*B*(r)do*
— (14 Ht)X[A(r)PE2/ED g2 (145)

For these solitons the three-dimensional space expands, but the fifth dimension can either expand,
contract, or remain static accordingly as £ > 0, £ < 0, or ¢ = 0 respectively.

8.4 Solitons as Dark Matter Candidates

Viewed in four dimensions via the induced-matter mechanism, the soliton resembles a hole in the
geometry surrounded by a spherically-symmetric ball of ultra-relativistic matter whose density falls
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off at large distances as 1/r*. If the universe does have more than four dimensions, these objects
should be quite common, being generic to Kaluza-Klein gravity in exactly the same way black holes
are to general relativity [180], [228]. It is therefore natural to ask whether they could supply the as-yet
undetected dark matter which according to many estimates makes up more than 90% of the matter in
the universe. Other dark matter candidates, like massive neutrinos or axions, primordial black holes,
and a finite-energy vacuum, encounter problems with excessive contributions to the extragalactic
background light (EBL) and the cosmic microwave background radiation (CMB), among other things
[358]. In view of this we consider here the possibility that the so-called “missing mass” consists of
solitons.

Adopting the same approach that has led to strong constraints on some of these other dark matter
candidates [358], one can begin by attempting to assess the effects of solitons on background radiation
[185], assuming that the fluid making up the soliton is in fact composed of photons (although there
are no a priori reasons to rule out, say, ultra-relativistic neutrinos or gravitons). Rather than guessing
at their spectral distribution we restrict ourselves to bolometric calculations for the time being. The
soliton density p, at large distances comes from eq. (79), and in the same regime eq. (138) gives
M

g ~ 2¢ek/a. Therefore, for solitons of asymptotic mass M;:

M2

~— 14
Smc2krt (146)

pS
where we have restored conventional units. Because this goes as 1/r* while volume (in the uniform
case) increases as only 73, local density will be overwhelmingly due to just one soliton - the nearest
one - and we do not need to know about the global distribution of these objects in space. The average
separation between solitons of mass M, in terms of their mean density p, is r = (Ms/ﬁs)1/3, and
we can use this as the distance to the nearest one. Writing the mean soliton density as a fraction
Oy = ps/perie of the critical density pe.ip = 1.88 x 107 26h?kgm =2 [359] (where h is the usual Hubble
parameter in units of 100 km s=' Mpc'), we then find that the effective local density (146) of
solitonic radiation, expressed as a fraction of the CMB density, is:

2/3
P 50 x 10-8ppigis (Mo , (147)
PCMB ’ Mg

where M, stands for one solar mass and pcyrp = 2.5 x 107°h 2 p,,4; is the equivalent mass density of
the CMB at zero redshift [359]. The quantity k£ is a free parameter, subject only to the consistency
relation (76). A particularly convenient choice for illustrative purposes is k = 1 (which implies € = 1
also). This class of solutions was discovered independently by Chatterjee [142] and has the special
property that gravitational mass M, (r) at large distances r > 1/a is equal to the Schwarzschild mass
M,. TIf we suppose that individual solitons have galactic mass (M, = 5 x 10" M) and that they
collectively make up all the dark matter required to close the universe (€25 = 0.9), then eq. (147)
tells us that distortions in the CMB will be of the order:

Ps
PCMB

~1.0x107° | (148)

where we have used h = 0.7 for the Hubble parameter. This is precisely the upper limit set by COBE
and other experiments on anomalous contributions to the CMB. So we can conclude that solitons, if
they are to provide a significant part of the missing mass, are probably less massive than galaxies.

A similar argument can be made on the basis of tidal effects. It is known that conventional dark
matter candidates such as black holes can be ruled out if they exceed ~ 108M, in mass, since such
objects would excessively distort the shapes of nearby galaxies. The same thing would apply to
solitons. However, one has to keep in mind that there is no reason for the parameters k£ and € to
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be equal to one for all solitons. They are not universal constants like ¢ or G, but can in principle
vary from soliton to soliton. Those with £ < 1 will have effective gravitational masses below the
corresponding Schwarzschild ones, and will consequently be less strongly constrained. A soliton with
k = 0.1, for example, will have ¢ = 1.05 from eq. (76), and its gravitational mass (138) at large r
will be M, = 0.105M, - only one-tenth the conventional value. And in the extreme case ek — 0, its
gravitational mass will vanish altogether. So while these are promising ways to look for Kaluza-Klein
solitons, caution must be taken in interpreting the results. Ideally one would like to be able to apply
one or more independent tests to a given astrophysical system. We therefore devote the rest of this
report to outlining the implications of Kaluza-Klein gravity for the classical tests of general relativity,
and for related phenomena such as those having to do with the principle of equivalence.

8.5 The Classical Tests

It is convenient to switch from the notation of Davidson & Owen [227] to that of Gross & Perry
[226], and to convert from isotropic coordinates to nonisotropic ones (in which ' = r(1+GM, /2r)?).
The soliton metric (77) then takes the form:

oM, \ M/® 1 2M, /") e=B=D/a
i = (1- 2 a2 /) A
(1 2M. /1)

r
(a—p=1)/a B/a
2M, 2M,
<1 . ) r'2d92<1 - ) dy® . (149)

r r

where o and [ are related to € and k by ¢ = —f/a and k = —1/, and where we have replaced the
Gross-Perry parameter m by M, /2. Eq. (149) clearly reduces to the familiar Schwarzschild solution
on hypersurfaces ¢ = constant as & — 1 and  — 0. Defining two new parameters a = 1/« and
b = fB/a, together with the function A(r) =1 — 2M,/r, eq. (149) becomes:

ds? = A%dt* — A=t gp? - AU-a=02902  Abgy? (150)

where we have dropped the primes on r for convenience. The consistency relation (76) takes the
form:

a’+ab+b" =1 . (151)

We wish to analyze the motion of photons and massive test particles in the field described by
the metric (150). The Lagrangian density £ can be obtained from £2 = g;.i’4*, where the z' are
generalized coordinates and the overdot denotes differentiation with respect to an affine parameter
(such as proper time in the case of massive test particles) along the particle’s geodesic trajectory.
For the metric (150) this gives:

L2 = A%? — A2 ALl ab 22 4 in2 992) — AbyY? (152)
From symmetry we can assume that § = 0, so = 7 /2 without loss of generality. Application of

the Euler-Lagrange equations to the Lagrangian (152) immediately produces three constants of the
motion:

=A% |, h=A0Y24 =AY . (153)

ol



The third of these quantities, k, is related to the velocity of the test particle along the fifth
dimension. The “Schwarzschild limit” of the theory hereafter refers to the values a = 1, b = 0 and
k = 0. With eqs. (152) and (153) we are in a position to describe the motion of photons and test
bodies in the weak-field approximation (ie., neglecting terms in (M, /r)? and higher orders). The
procedure is exactly analogous to that in ordinary general relativity [360], and since details have
been given elsewhere [148], [187]-[190] we confine ourselves in what follows to summarizing only the
main assumptions and conclusions.

8.6 Gravitational Redshift

This test depends only on the coefficients of the metric (150) and, since the latter is static, one can
consider emitters and receivers of light signals with fixed spatial coordinates. The ratio of frequencies
of the received and emitted signals is simply:

o _ goo(re)
Ve Joo (’rr)

(154)

where 1, and r, are the positions of the emitter and receiver respectively. Using the metric (150)
and discarding terms of second and higher orders in M, /r, one finds [188] that:

r Ve 1 1
— :aM*(———> . (155)

Ve Ty Te

From this result it is clear that the gravitational redshift in Kaluza-Klein theory is in perfect
agreement with that of four-dimensional general relativity, as long as one defines the gravitational
mass M, of the soliton by M, = aM,.

8.7 Light Deflection

The light deflection test is more interesting. Noting that ds* = 0 for photons, and substituting the
expressions (153) into eq. (150), one finds the following equation of motion:

dry 2 !
(G5) - (atmr a0 (156)

For weak fields this can be solved [188] to yield a hyperbolic orbit r(¢) in which the photon
approaches the central mass from infinity at ¢ = 0 and escapes to infinity along ¢ = m + w. The
total deflection angle w is given by:

4M,
To

w =

+ 2M,pro (157)
where p = (2 —a — 2b)(k/h)? — (2 —2a — b)(I/h)? and 7 is the impact parameter (distance of closest
approach to the central mass). The first term in eq. (157) is the familiar Einstein light deflection
angle. The second term represents a correction due to the presence of the fifth dimension, and is in

principle measurable. (Note that the apparent linear dependence of this term on ry is illusory as p
involves the square of the “angular momentum” constant h o rqy in its denominator.)

The physical meaning of this result can be clarified by using the metric (150) and the definitions
(153) to recast eq. (157) in the form [189]:
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4l F— m(dp/dt)?
o= ()| 1)
where:
f = (1—a—b/2)A 0720
m = (1-a/2-b)A 03 p=40b (159)

The m- and n-terms can be ignored when the velocity di/dt of the test body along the fifth dimen-
sion is negligible. This is certainly true for photons (whose velocity is constant in four dimensions).
In addition one can go to the weak-field limit and neglect terms of first order in M, /r compared to
one, so that A = 1. In that case f =1 — (a +b/2) and eq. (158) becomes:

w= M, (a + g) : (160)

o

This reduces to the general relativistic result in the Schwarzschild limit. For other values of @ and
b, the Kaluza-Klein light-bending angle will depart from Einstein’s prediction, and it is natural to
inquire how big such a departure could be. The consistency relation (151) implies that (a + 0/2) =
/1 —3b%/4, so in principle eq. (160) is compatible with a range of angles —~wgr < w < wgr,
where wgr is the general relativistic value. This would allow for null deflection (for b* = 4/3) and
even light repulsion (for negative roots). These possibilities are, however, unphysical to the extent
that they imply negative values for the (four-dimensional) mass of the soliton. Inertial mass M;,
for example, can be obtained from the Landau pseudo energy-momentum tensor [190], [214], [226],
[361], and turns out to be M; = (a + b/2)M,. Therefore if one requires positivity of inertial mass,
then (a + b/2) > 0, which is incompatible with light repulsion. Similarly, gravitational mass M, is
found from the asymptotic behaviour of ggo [190], [214], [226], [361] to be given by M, = aM, (see
also §8.6). (As discussed in these references, and in §8.11, the fact that M, # M, for b # 0 need not
necessarily constitute a violation of the equivalence principle in Kaluza-Klein theory.) Combining the
requirements that M, > 0 and M; > 0 with the consistency relation (151), one finds that 0 < b < 1.
Therefore if one requires positivity of both inertial and gravitational mass, then the Kaluza-Klein
light deflection angle (160) must lie in the range 0.5wgr < w < wgg, which rules out null deflection
as well as light repulsion.

This however still leaves room for significant departures from general relativity. Why have these
not been observed? Most tests to date have been carried out in the solar system which, considered as
a soliton, is very close to the limiting Schwarzschild case since nearly all its mass is concentrated near
the center. From this perspective the fact that long-baseline interferometric measurements of solar
light-bending [197] have confirmed Einstein’s prediction to within a factor of 41073 merely tell us -
via eq. (160) - that the Sun must have b < 0.05. Larger values of this parameter, and hence larger
deviations from the predictions of general relativity, might be looked for in the halos of large elliptical
galaxies, or in clusters of galaxies, where mass is more evenly distributed. Much of the dark matter is
widely believed to be in these places, and if some or all of it is made up of Kaluza-Klein solitons then
one could hope to find evidence of anomalous deflection angles in observations of gravitational lensing
by elliptical galaxies [362], galaxy clusters [363]-[366], and perhaps in observations of microlensing
by rich clusters [367].

Just as in four-dimensional general relativity, one can also solve the equation of motion (156) for
circular, as well as hyperbolic photon orbits. Putting 7 = 0 gives [188]:

(1—a—2b) ke

hQ

A
™+ (b—a)A

1 —2a — b)r?
( a b)r—i—M*

=0 . (161)
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For negligible motion along the fifth dimension (k = 0) this leads to:

r=(14+2a+bM, . (162)

In the Schwarzschild limit this gives back the general relativistic result. For other values of a and
b, circular photon orbits can occur at other radii. However, prospects for distinguishing between
alternative theories of gravity based on this phenomenon are slim [197], so we do not consider it
further.

8.8 Perihelion Advance

The elliptical orbits of massive test bodies in orbit around the central mass are of greater interest
[187]. Using d§* # 0 leads to a slightly more complicated version of the equation of motion (156).
This can be solved for the orbit of the test body, which is nearly periodic. The departure from
periodicity per orbit, or perihelion shift, is found [188] to be:

6 M? e
= * — 1
3¢ 72 <d+ 6) , (163)

where:

d = (1+k)+(a—1)(-1+20° k) +b(—1+1" 2k
e = 22—a—b)(—=1+a+0b)+20*(—2+2a+0b)(—1+2a+b)
+2k*(2 —a — 2b)(—1 +a +2b) . (164)

This gives back the usual general relativistic result in the Schwarzschild limit. If the orbit is nearly
circular then eq. (163) can be simplified to read:

67 M, 2b
— - 1
3¢ . <a—i— 3) , (165)

where r is the orbit’s coordinate radius. As with the light deflection test, solar system experiments
(precession of Mercury’s orbit) imply that the Sun, if modelled as a soliton, must have values of a
and b very close to the Schwarzschild ones. Extrasolar systems, however, might show nonstandard
periastron shifts. Candidate systems could include DI Herculis [368] and AS Camelopardalis [369],
as well as binary pulsars [370], x-ray binaries [371], and possibly pulsars with planetary companions
[372], [373]. (Eq. (163) would require modifications for systems with significant mass ratios.)

8.9 Time Delay

A similar procedure gives the proper time taken by a photon on a return trip between any two points
in the field of the central mass. The definitions (153) and equation of motion (156) lead to the
following result [188]:
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where 7,, . and r, are the photon’s distance of closest approach to the central mass and the radius
measures to the emitting planet (usually Earth) and reflecting planet respectively, and r is the
coordinate radius at which measurement is made (usually the same as r.). In the Schwarzschild
limit, eq. (166) gives back the usual result of four-dimensional general relativity. Experimental data
such as that from the Viking spacecraft [197] tell us that our solar system is close to this limit.

8.10 Geodetic Precession

The motion of a spinning object in five dimensions is more complicated, but can be usefully studied
in at least two important special cases: (1) the case in which the 4 component of the spin vector 54
is zero [188]; and (2) the case in which the 4-component of spacetime is flat [183]. We review these
in turn.

The object in both cases is to solve for S as a function of proper time 5. The requirement of
parallel transport implies:

dsM
pE + 13,840 =0, (167)
LS

B

where 04 = dz/d3 is the five-velocity. Since S# is spacelike whereas 0% is timelike, their inner

product can be made to vanish:

GapStoP =0 . (168)

Eqgs. (167) and (168), together with the metric, can be solved for the components of the spin

~

vector S if some simplifying assumptions are made.

To evaluate case (1) we use the Gross-Perry soliton metric (150), we restrict ourselves to circular
orbits #71(38), (for which the velocity vector ' can be written 04 = (¢,0,0,td¢/dt,0)), and assume
that S* = 0. The resulting expressions for the components of S4 are lengthy [188] and not particularly
illuminating. The important thing about them is that the spatial components Si show a rotation
relative to the radial direction, with proper angular speed [188]:

[r — (1 +a+b)M,]rle1/?2
0o ( (r —2M,)e+D/2 o (169)

where Qg = d¢/dt is given by:

l—a—0b)/1—2M,1-20-b
QU — |:( a ) ( ) 7"2
a r
1/2

(= 2M*)“”r3] | (170)

all, r

95



A spin vector S whose initial orientation is along the radial direction will, after one revolution
along x(3), undergo a geodetic precession:

L+ a+b)M.\/r — (1 +2a+b)M,
r(r — 2M,)

56 = 2 Vel (171)

Going to the weak-field limit and using the consistency relation (151), one can reduce this expres-
sion to:

M, 2
5 = " <a + ;) , (172)
T

which gives back the usual general relativistic result in the Schwarzschild limit. In general there
will be deviations from Einstein’s theory which are in principle measurable. One way to detect
them would be with orbiting gyroscopes like those aboard the Gravity Probe-B (GP-B) satellite
[374], designed to orbit the earth at an altitude of 650 km. Assuming for the sake of illustration
the same value of b = 0.05 mentioned in §8.7 as the largest one compatible with solar light-bending
experiments, one finds from eq. (172) that the geodetic precession in Kaluza-Klein theory would
be 1.238 milliarcseconds per revolution, or an angular rate of 6.674 arcsec yr—*. This exceeds the
general relativistic prediction (6.625 arcsec yr—!) by 49 milliarcsec yr—' - a difference that would
easily be detected by GP-B. In fact this satellite is expected to measure angular rates as small as 0.1
milliarcsec yr~', which would allow it to probe b-values as small as 10~*.

We turn now to case (2), in which the spin vector S* is arbitrary but the fifth dimension of
spacetime is flat. Instead of the soliton metric (150) we introduce a simpler five-dimensional line
element [183] which is also spherically-symmetric in three-dimensional space:

2 2M* 2
452 = %[(1— —%)dtQ
T

oM, 2\ '
<1 B %) dr? — erQQ] Cdy? (173)

r

This reduces to the four-dimensional Schwarzschild-de Sitter line element on surfaces 1) = constant:

oM, 12 oM, 2\ !
2 * 2 * 2 2 2
ds _(1— - ——L2>dt —(1— - ——L2> dr? — r2dQ? | (174)

and the constant L (which has units of length) gives rise to an effective four-dimensional cosmological
constant A = 3/L? [178], [179]. The four-dimensional universe is characterized by induced matter
whose density and pressure are found from eqs. (63) to be given by p = 3/¢? and p = —p.

Consider first of all an object which is not spinning. Its orbit z(3) is found using the metric
relation (173), which satisfies a consistency relation:

gaptioP =1 (175)
together with the geodesic equation (96). The A = 5 component of this latter equation turns out
[183] to be:

2y 1 dy\® 1
d§2+i<$> +@_0 . (176)
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This has the simple solution ? = 2 — §*, where ¢, = constant. Since eqs. (173) and (174) are
related by ds? = (¢p/L)*ds* — di?, one finds that:

_ wm
v= cosh[(s — s,,)/L] (177)

where s,, is some fiducial value of the four-dimensional proper time at which ¢ = ,,. Physically,
the fifth coordinate in this spacetime expands from zero size to a maximum value of ¢,,, and then
contracts back to zero. We are living in the period s > s,,, when 1 is decreasing (cf. §7.1) on
cosmological timescales. (The length L is large if the cosmological constant A is small.)

The spatial components of the geodesic equation (96) for this five-dimensional metric turn out to
be identical with the usual four-dimensional ones [178], [183]. This is somewhat surprising since the
four-dimensional metric (174) depends on . It means that the classical tests of relativity discussed
in §8.6 - §8.9 are by themselves insufficient to distinguish between Einstein’s theory and its five-
dimensional counterpart. When spin is included, however, the two theories lead to very different
predictions. For this we require the full machinery of eqs. (167) and (168) as well as egs. (96)
and (175). Consider for simplicity a circular orbit as before, and assume that the spin vector lies in
the plane of the orbit (so §? = 0), and that one can arrange mechanically to satisfy the inequality
rS® < St (These conditions are close to those in the GP-B experiment, or alternatively might be
used to model the Sun-Uranus system, since the spin axis of Uranus lies near its orbital plane.) In
this case the four equations noted above allow one to solve for all the components of the spin vector
(including S*). Tts precession from the radial direction after one orbit turns out in the weak-field
limit (r?/L* < M,/r < 1) to be [183]:

3 M, 2w Hyr
d0p = — 178
¢ r HiLcosh[(sg — sm)/L] (178)

where sq is the value of s at the beginning of the orbit, and H,; and H, are normalized amplitudes of
the spin vector along the ' and 2* axes respectively. The first term is the usual geodetic precession of
four-dimensional general relativity. The extra term depends on the size Hy/H; of the spin component
along the fifth dimension, the mass M, of the central body, and cosmological factors like the elapsed
four-dimensional proper time. It also involves radius in a manner quite different from that of the
first term, which suggests that the two terms could be separated experimentally. Whether this is
practical or not has yet to be established, but further investigation is warranted insofar as geodetic
precession is the only test of relativity which can in principle allow us to distinguish between the
five-dimensional metric (173) and the four-dimensional one (174).

8.11 The Equivalence Principle

Many of the above tests show departures from four-dimensional geodesic motion. These could be
interpreted as violations of the weak equivalence principle (WEP) by the curvature of the fifth
dimension. However, Gross & Perry [226] have argued that they should more appropriately be
attributed to a breakdown of Birkhoff’s theorem, since the underlying theory is fully covariant in five
dimensions and involves only gravitational effects. Cho & Park [214] have made similar comments,
arguing that the extra dimension acts like a fifth force which is, however, indistinguishable from
gravity for an uncharged particle. The nature of the fifth force in noncompactified theory has
recently been treated in depth by Mashhoon et al. [26]. Here we consider only the simple but
dramatic illustration afforded by a test body in radial free fall near a soliton. This is the analog of
Galileo’s experiments with objects dropped vertically in the Earth’s gravitational field. And while
this case is somewhat impractical in the context of modern tests of gravity, we will see that it leads
to several simple and instructive results.
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For vertical free-fall, df = d¢ = 0, and the equation of motion (156) leads directly to the following
result in terms of the constants (153):

i? = A2 — A0 — Alet) (179)

For a particle which begins at rest (7 = 0) at r = rg, this equation gives:

1 = [A(ro)]* + [A(ro)) Dk . (180)

Combining eqs. (179) and (180), one obtains the “energy condition” [188]:

oM, \" (. 2M 20, \
r T r
oM\ (. 2M.\" M, “*
+(1- 1 —(1- . (181)
r To r
In the Schwarzschild limit this gives back the familiar four-dimensional formula 7% = 2M,(1/r —

1/7g), which has the same form as the energy equation (for vertical free-fall) in classical Newtonian
theory.

The particle’s coordinate velocity in the r-direction is given by u, = dr/dt = ids/dt, and can be
calculated from eq. (181) and the metric (150). It turns out (for ry — oo) to be [188]:

o -l (22
(-2 -2

This explicitly depends on velocity along the fifth dimension through k. Test particles with nonzero
values for this parameter will deviate from geodesic trajectories (in four dimensions) and appear to
violate the WEP. The a and b parameters also produce discrepancies with four-dimensional theory.
For example, the radius where u, begins to decrease (as the test particle nears the Schwarzschild
surface) differs from the simple value of r* = 6 M, predicted in Einstein’s theory. In the case where
k* < 1 one finds instead [188]:

2 b 1/aq —1
r*:2M*{1<a+> ] . (183)

3a+0b

This reduces to the general relativistic result in the Schwarzschild limit.

The effects of the fifth dimension can perhaps be most readily appreciated in the particle’s accel-
eration, which comes from differentiating eq. (179):

M.

*
7"2

=

[(a + b)Al+s=D _ 12 A1 4 g2 A1) (184)
In the Schwarzschild limit (¢ = 1,b = 0) this reduces to:

(1+ k%)M,

r = — 5 ,

(185)
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which gives back the familiar four-dimensional result when £ = 0. In general, though, the particle’s
hidden velocity in the fifth dimension affects its rate of fall towards the central body in a very
significant way. For completeness we note that a particle which has £ = 0 and starts from rest at
infinity (in which case eq. (180) implies I = 1 + k?) will have:

alMl,

2 Y

r =

186
- (156)
at large distances (r > 2M,). This confirms that a particle accelerates in the field of the soliton at
a rate governed by M, = alM, (the gravitational mass) and not M,. As mentioned in §8.7, neither

Mg nor M, is necessarily the same as the soliton’s inertial mass M; in Kaluza-Klein theory, the two
quantities being related [190], [214], [226], [361] by:

a

M; = <1 + 23>Mg . (187)

These are strictly identical only in the Schwarzschild limit b = 0, and in other cases there will be
apparent violations of the WEP. (Note that the factor of two is missing in ref. [226].) Experimentally,
one can focus on the quantity:

(My/M;)a — (My/M;)p

&= T10, 04+ (M, /M) )

: (188)

where the subscripts A and B stand for two objects with different compositions. This is known from
experiments on the Earth to be less than about 2 x 107!, and would be measured to as little as
10717 by the proposed Satellite Test of the Equivalence Principle (STEP) [375]. If eq. (187) is valid,
then one expects two different solitons to have:

s=3(2), (2)
21\ a B a) ,

which vanishes in the Schwarzschild limit & = 0. This relation provides yet another way to probe
experimentally for the possible existence of extra dimensions.

: (189)

9 Conclusions

Kaluza unified Einstein’s theory of gravity and Maxwell’s theory of electromagnetism by the simple
device of letting the indices run over five values instead of four. Other interactions can be included
by letting the indices take on even larger values, but in our review we have concentrated on the
prototype theory viewed as an extension of general relativity. Klein’s contribution was to explain the
apparently unobserved nature of the extra dimension by assuming it was rolled up to a small size, and
compactified Kaluza-Klein theory remains one of three principal approaches to the subject. Another
is to use the extra dimension as an algebraic aid, as in the projective approach. A third version of
Kaluza-Klein theory, on which we have spent considerable time since it is the newest, regards the
fifth dimension as real but not necessarily a simple length or time. In the space-time-matter theory,
it is responsible for mass.

All three versions of Kaluza-Klein theory are viable as judged by experiment and observation. In
particular, they cannot be ruled out by the classical tests of relativity or results from astrophysics
and cosmology. Indeed, it can be difficult to distinguish between the three main versions of Kaluza-
Klein theory at the present time because their observational consequences are often similar. To help
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differentiate between its variants and bring the whole subject closer to critical test, we suggest several
things: (1) A search for exact solutions of new types. New Kerr-like solutions, for example, would
help to model spinning elementary particles. (2) More work on quantization. This is a perennial
problem, of course, but the richness of Kaluza-Klein theory may offer new routes to its resolution.
(3) An investigation of the physical nature of the fifth dimension. While it is merely a construct in
the projective approach, it is real and may become large in certain regimes of exact solutions in the
compactified approach. In the noncompactified approach, it is not only real but in principle always
observable provided one chooses a coordinate system or gauge that properly brings it out.

We do not wish to prejudge the issue of which if any version of Kaluza-Klein gravity will emerge as
superior. However, the progress of physics lies in explaining more phenomena on the basis of theories
that are constrained by standards of logic, conciseness and elegance. In this regard, we venture the
opinion that the fifth dimension will be needed.
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