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Vitoria, British Columbia, Canada, V8W 3P6andP. S. WessonDepartment of Physis, University of Waterloo, Ontario, Canada N2L 3G1andGravity Probe-B, Hansen Physis Laboratories, Stanford University, Stanford,California, U.S.A. 94305arXiv:gr-q/9805018 v1 7 May 1998Preprint submitted to Elsevier Preprint 20 April 20010.1 AbstratWe review higher-dimensional uni�ed theories from the general relativity, rather than the partilephysis side. Three distint approahes to the subjet are identi�ed and ontrasted: ompati�ed,projetive and nonompati�ed. We disuss the osmologial and astrophysial impliations of extradimensions, and onlude that none of the three approahes an be ruled out on observational groundsat the present time.1 IntrodutionKaluza's [1℄ ahievement was to show that �ve-dimensional general relativity ontains both Einstein'sfour-dimensional theory of gravity and Maxwell's theory of eletromagnetism. He however imposeda somewhat arti�ial restrition (the ylinder ondition) on the oordinates, essentially barring the�fth one a priori from making a diret appearane in the laws of physis. Klein's [2℄ ontribution wasto make this restrition less arti�ial by suggesting a plausible physial basis for it in ompati�ationof the �fth dimension. This idea was enthusiastially reeived by uni�ed-�eld theorists, and whenthe time ame to inlude the strong and weak fores by extending Kaluza's mehanism to higherdimensions, it was assumed that these too would be ompat. This line of thinking has led througheleven-dimensional supergravity theories in the 1980s to the urrent favorite ontenders for a possible\theory of everything," ten-dimensional superstrings.We review the �eld of Kaluza-Klein gravity, onentrating on the general relativity, rather thanpartile physis side of the subjet. (For the latter there are already many exellent books [3℄-[8℄ andreview artiles [9℄-[14℄ available.) We also aim to re-examine the �eld to some extent, as it seemsto us that the art of ompati�ation has in some ways gotten ahead of the horse of uni�ation.Kaluza uni�ed not only gravity and eletromagnetism, but also matter and geometry, for the photonappeared in four dimensions as a manifestation of empty �ve-dimensional spaetime. Modern Kaluza-Klein theories, by ontrast, routinely require the addition of expliit \higher-dimensional matter"�elds in order to ahieve suessful ompati�ation (among other things). Are they neessary? Yes,if extra oordinates must be real, lengthlike and ompat. There are, however, higher-dimensionaluni�ed �eld theories whih require none of these things: projetive theories [15℄-[18℄, in whih extraoordinates are not physially real; and nonompati�ed theories [19℄-[26℄, in whih they are notneessarily lengthlike or ompat. These theories reeive speial attention in our report.We begin in x2 with a historial overview of higher-dimensional theories of gravity. In x3 wereview Kaluza's original mehanism, emphasizing what to us are its three prinipal features. Thethree main approahes to higher-dimensional uni�ation sine Kaluza - ompati�ed, projetive and2



nonompati�ed - are reviewed in x4, x5 and x6 respetively. We note that eah one modi�es orsari�es at least one of the key features of Kaluza's theory, and disuss the impliations. The all-important question of experimental onstraints is addressed in x7 and x8, whih deal respetivelywith osmologial and astrophysial e�ets of extra dimensions. None of the three above-mentionedapproahes an be ruled out on observational grounds at the present time. Conlusions and prospetsfor further work are summarized in x9.2 Historial Overview2.1 Higher DimensionsThe world of everyday experiene is three-dimensional. But why should this be so? The questiongoes bak at least to Kepler [27℄, who speulated that the threefold nature of the Holy Trinity mightbe responsible. More reent arguments have involved the stability of planetary orbits and atomiground states, the use of wave propagation for information transmission, the fundamental onstantsof nature, and the anthropi priniple [28℄, as well as wormhole e�ets [29℄, the osmologial onstant[30℄, ertain \geometry-free" onsiderations [31℄, string theories [32℄, and nuleation probabilities inquantum osmology [33℄. All these lines of reasoning onverge on the same onlusion: that, inagreement with ommon intuition, spae is omposed of three marosopi spatial dimensions x1, x2and x3.Nevertheless, the temptation to tinker with the dimensionality of nature has proved irresistibleto physiists over the years. The main reason for this is that phenomena whih require very dif-ferent explanations in three-dimensional spae an often be shown to be manifestations of simplertheories in higher-dimensional manifolds. But how an this idea be reoniled with the observedthree-dimensionality of spae? If there are additional oordinates, why does physis appear to beindependent of them?It is useful to keep in mind that the new oordinates need not neessarily be lengthlike (in thesense of being measured in meters, say), or even spaelike (in regard to their metri signature). Aonrete example whih violates both of these expetations was introdued in 1909 by Minkowski[34℄, who showed that the suesses of Maxwell's uni�ed eletromagneti theory and Einstein's speialrelativity ould be understood geometrially if time, along with spae, were onsidered part of afour-dimensional spaetime manifold via x0 = it. Many of the abovementioned arguments againstmore than three dimensions were irumvented by the fat that the fourth oordinate did not markdistane. And the reason that physis had appeared three-dimensional for so long was beause of thelarge size of the dimension-transposing parameter , whih meant that the e�ets of \mixing" spaeand time oordinates (ie., length ontration, time dilation) appeared only at very high speeds.2.2 Kaluza-Klein TheoryInspired by the lose ties between Minkowski's four-dimensional spaetime and Maxwell's uni�ationof eletriity and magnetism, Nordstr�om [35℄ in 1914 and (independently) Kaluza [1℄ in 1921 werethe �rst to try unifying gravity with eletromagnetism in a theory of �ve dimensions (x0 throughx4). Both men then faed the question: why had no �fth dimension been observed in nature? InMinkowski's time, there had already been experimental phenomena (namely, eletromagneti ones)whose invariane with respet to Lorentz transformations ould be interpreted as four-dimensionaloordinate invariane. No suh observations pointed to a �fth dimension. Nordstr�om and Kaluzatherefore avoided the question and simply demanded that all derivatives with respet to x4 vanish.In other words, physis was to take plae - for as-yet unknown reasons - on a four-dimensional3



hypersurfae in a �ve-dimensional universe (Kaluza's \ylinder ondition").With this assumption, eah was suessful in obtaining the �eld equations of both eletromag-netism and gravity from a single �ve-dimensional theory. Nordstr�om, working as he was before generalrelativity, assumed a salar gravitational potential; while Kaluza used Einstein's tensor potential.Spei�ally, Kaluza demonstrated that general relativity, when interpreted as a �ve-dimensional the-ory in vauum (ie., 5GAB = 0, with A, B running over 0, 1, 2, 3, 4), ontained four-dimensionalgeneral relativity in the presene of an eletromagneti �eld (ie., 4G�� =4 TEM�� , with �, � runningover 0, 1, 2, 3), together with Maxwell's laws of eletromagnetism. (There was also a Klein-Gordonequation for a massless salar �eld, but this was not appreiated - and was in fat suppressed - byKaluza at the time.) All subsequent attempts at higher-dimensional uni�ation spring from thisremarkable result.Various modi�ations of Kaluza's �ve-dimensional sheme, inluding Klein's idea [2℄, [36℄ of om-patifying the extra dimension (whih we will disuss in a moment) were suggested by Einstein,Jordan, Bergmann, and a few others [37℄-[43℄ over the years, but it was not extended to more than�ve dimensions until theories of the strong and weak nulear interations were developed. The ob-vious question was whether these new fores ould be uni�ed with gravity and eletromagnetism bythe same method.The key to ahieving this lay in the onept of gauge invariane, whih was oming to be reognizedas underlying all the interations of physis. Eletrodynamis, for example, ould be \derived"by imposing loal U(1) gauge-invariane on a free-partile Lagrangian. From the gauge-invariantpoint of view, Kaluza's feat in extrating eletromagnetism from �ve-dimensional gravity was nolonger so surprising: it worked, in e�et, beause U(1) gauge-invariane had been \added onto"Einstein's equations in the guise of invariane with respet to oordinate transformations along the�fth dimension. In other words, gauge symmetry had been \explained" as a geometri symmetry ofspaetime. The eletromagneti �eld then appeared as a vetor \gauge �eld" in four dimensions. Itwas natural - though not simple - to extend this insight to groups with more ompliated symmetry.De Witt [44℄ in 1963 was the �rst to suggest inorporating the non-Abelian SU(2) gauge groupof Yang and Mills into a Kaluza-Klein theory of (4 + d) dimensions. A minimum of three extradimensions were required. This problem was piked up by others [45℄-[47℄ and solved ompletely bythe time of Cho & Freund [48℄, [49℄ in 1975.2.3 Approahes to Higher-Dimensional Uni�ationWe emphasize here three key features of all the models disussed so far:(i) They embody Einstein's vision [50℄-[52℄ of nature as pure geometry. (This idea an be traed innonmathematial form at least to Cli�ord in 1876 [53℄, and there are hints of it as far bak as theIndian Vedas, aording to Wheeler and others [54℄.) The eletromagneti and Yang-Mills �elds, aswell as the gravitational �eld, are ompletely ontained in the higher-dimensional Einstein tensor(4+d)GAB; that is, in the metri and its derivatives. No expliit energy-momentum tensor (4+d)TAB isneeded.(ii) They are minimal extensions of general relativity in the sense that there is no modi�ation tothe mathematial struture of Einstein's theory. The only hange is that tensor indies run over 0to (3 + d) instead of 0 to 3.(iii) They are a priori ylindrial. No mehanism is suggested to explain why physis depends on the�rst four oordinates, but not on the extra ones.The �rst two of these are agreeable from the point of view of elegane and simpliity. The third,however, appears ontrived to modern eyes. In the e�ort to repair this defet, higher-dimensionaluni�ed theory has evolved in three more or less independent diretions sine the time of Kaluza.4



Eah one sari�es or modi�es one of the features (i) to (iii) above.Firstly, it has been proposed that extra dimensions do not appear in physis beause they areompati�ed and unobservable on experimentally aessible energy sales. This approah has beensuessful in many ways, and is the dominant paradigm in higher-dimensional uni�ation (reentreviews inlude many exellent books [3℄-[8℄ and artiles [9℄-[14℄). If one wants to unify more thanjust gravity and eletromagnetism in this way, however, it seems that one has in pratie to abandonEinstein's goal of geometrizing physis, at least in the sense of (i) above.A seond way to sweep the extra dimensions out of sight is to regard them as mathematial artifatsof a more ompliated underlying theory, sari�ing (ii) above. This an be done, for example, ifone replaes the lassial (aÆne) geometry underlying Einstein's general relativity with projetivegeometry (see for reviews [15℄-[18℄). \Extra dimensions" then beome visual aids whih may ormay not help us understand the underlying mathematis of nature, but whih do not orrespond tophysial oordinates.The third approah to the problem of explaining exat ylindriity is to onsider the possibility thatit may not neessarily be exat, relaxing (iii) above. That is, one takes the new oordinates at faevalue, allowing physis to depend on them in priniple [19℄-[26℄. This dependene presumably appearsin regimes that have not yet been well-probed by experiment - muh as the relevane of Minkowski'sfourth dimension to mehanis was not apparent at non-relativisti speeds. When dependene onthe extra dimensions is inluded, one �nds that the �ve-dimensional Einstein equations 5RAB = 0ontain the four-dimensional ones 4G�� =4 T�� with a general energy-momentum tensor 4T�� insteadof just the eletromagneti one 4TEM�� .2.4 The Compati�ed ApproahKlein showed in 1926 [2℄, [36℄ that Kaluza's ylinder ondition would arise naturally if the �fth oor-dinate had (1) a irular topology, in whih ase physial �elds would depend on it only periodially,and ould be Fourier-expanded; and (2) a small enough (\ompati�ed") sale, in whih ase theenergies of all Fourier modes above the ground state ould be made so high as to be unobservable(exept - as we now add - possibly in the very early universe). Physis would thus be e�etively in-dependent of Kaluza's �fth dimension, as desired. As a bonus, it seemed early on that the expansionof the eletromagneti �eld into Fourier modes ould in priniple explain the quantization of eletriharge. (This aspet of the theory has had to be abandoned, however, as the harge-to-mass ratio ofthe higher modes did not math that of any known partiles. Nowadays elementary harges are iden-ti�ed with the ground state Fourier modes only, and their small mass is attributed to spontaneoussymmetry-breaking.)The sheme was not perfet; one still needed to explain why extra dimensions di�ered so markedlyin topology and sale from the familiar spaetime ones. Their size in partiular had to be extremelysmall (below the attometer (1am = 10�18m) sale, aording to urrent experiment [55℄). There wasalso the question of how to interpret a new salar �eld whih appeared in the theory. These diÆultieshave, however, proved manageable. Salar �elds are not as threatening as they one appeared; onenow just assumes that they are too massive to have been observed. And an entire industry has grownup around the study of ompati�ation mehanisms and the topology of ompat spaes.In fat, Klein's strategy of ompatifying extra dimensions has ome to dominate higher-dimensionaluni�ed physis, leading in reent years to new �elds like eleven-dimensional supergravity and ten-dimensional superstring theory. We will survey these developments in this setion, and make ontatwith many of them throughout this report, but it is not our purpose to review them exhaustively.For this the reader is direted to the books [3℄-[8℄, and review artiles [9℄-[14℄ mentioned already.Our goal here is to take a broad view, omparing and ontrasting the various approahes to higher-5



dimensional gravity, and fousing in partiular on those whih have reeived less ritial attention inthe literature. A semanti note: while the term \Kaluza-Klein theory" ought, stritly speaking, toapply only to models whih assume both ylindriity and ompati�ed dimensions, we follow popu-lar usage and apply the term to any higher-dimensional uni�ed theory of gravity in whih the extradimensions are regarded as real, whether ompati�ed or not. When distinguishing between thesetwo, we will refer in the latter ase to \nonompati�ed Kaluza-Klein theories," though this is tosome extent a ontradition in terms.2.5 Compati�ation MehanismsA diÆulty with ompati�ation is that one annot impose it indisriminately on whihever dimen-sions one likes - the ombination of marosopi four-dimensional spaetime plus the ompati�edextra-dimensional spae must be a solution of the higher-dimensional Einstein �eld equations. Inpartiular, one should be able to reover a \ground state" solution onsisting of four-dimensionalMinkowski spae plus a d-dimensional ompat manifold. Although this is straightforward whend = 1 (Klein's ase), the same thing is not true in higher-dimensional theories like that of Cho &Freund, where the ompat spaes are in general urved [7℄, [56℄-[59℄. The onsequenes of ignoringthis inonsisteny in \Kaluza-Klein ansatz" have been emphasized by Du� et al. [11℄, [12℄, [14℄, [60℄.This and related problems have even led Cho [61℄-[64℄ to all for the abandonment of Klein's \zeromodes approximation" as a means of dimensional redution.In general, however, spaetime an still be oaxed into ompatifying in the desired manner - atthe ost of altering the higher-dimensional vauum Einstein equations, either by inorporating torsion[65℄-[68℄, adding higher-derivative terms (eg., R2) onto the Einstein ation [69℄, or - last but not least- adding an expliit higher-dimensional energy-momentum tensor to the theory. If hosen judiiously,this last will indue \spontaneous ompati�ation" of the extra dimensions, as �rst demonstratedby Cremmer & Sherk [70℄, [71℄. This approah, though, sari�es Einstein and Kaluza's dream[50℄-[54℄ of a purely geometrial uni�ed theory of nature. Rather than explaining the \base wood"of four-dimensional matter and fores as manifestations of the \pure marble" of geometry in higherdimensions, one has essentially been driven to invent new kinds of wood. Weinberg [72℄ has likenedthis situation to the fable of \stone soup," in whih a miraulous stew, allegedly made out of roks,turns out on deeper investigation to be made from roks plus various kinds of vegetables, meat andspies.In spite of this aestheti drawbak, however, the idea of spontaneous ompati�ation gainedrapid aeptane [73℄-[78℄ and has beome the standard way to reonile extra dimensions withthe observed four-dimensionality of spaetime in Kaluza-Klein theory (see Bailin & Love [13℄ fora review). An important variation is that of Candelas & Weinberg [79℄, [80℄, who showed thatthe quantum Casimir energy of massless higher-dimensional �elds, when ombined with a higher-dimensional osmologial onstant, an also ompatify the extra dimensions in a satisfatory way.Unfortunately, some 104 � 105 matter �elds are required.2.6 D = 11 SupergravityOne way to make the addition \by hand" of extra matter �elds more natural was to make the theorysupersymmetri (ie., to math up every boson with an as-yet undeteted fermioni \superpartner" andvie versa). The reason for this is that the (ompati�ed) Kaluza-Klein programme of \explaining"gauge symmetries as (restrited) higher-dimensional spaetime symmetries an only give rise to four-dimensional gauge bosons. If the theory is to inlude fermioni �elds, as required by supersymmetry,then these �elds at least must be put in by hand. (This limitation may not neessarily applyto nonompati�ed Kaluza-Klein theories, in whih the modest dependene on extra oordinates -6



subjet to experimental onstraints - gives the Einstein equations a rih enough struture that matterof a very general kind an be \indued" in the four-dimensional universe by pure geometry in higherdimensions. In �ve dimensions, for example, one an obtain not only photons, the gauge bosons ofeletromagnetism, but also dustlike, vauum, or \sti�" matter.)Supersymmetri gravity (\supergravity") began life as a four-dimensional theory in 1976 [81℄, [82℄,but quikly made the jump to higher dimensions (\Kaluza-Klein supergravity"). It was partiularlysuessful in D = 11, for three prinipal reasons. First, Nahm [83℄ showed that eleven was themaximum number of dimensions onsistent with a single graviton (and an upper limit of two onpartile spin). This was followed by Witten's proof [84℄ that eleven was also the minimum numberof dimensions required for a Kaluza-Klein theory to unify all the fores in the standard model ofpartile physis (ie., to ontain the gauge groups of the strong (SU(3)) and eletroweak (SU(2) �U(1)) interations). The ombination of supersymmetry with Kaluza-Klein theory thus appearedto uniquely �x the dimensionality of spaetime. Seondly, whereas in lower dimensions one had tohoose between several possible on�gurations for the extra matter �elds, Cremmer, Julia & Sherk[85℄ demonstrated in 1978 that in D = 11 exatly one hoie was onsistent with the requirements ofsupersymmetry (in partiular, that there be equal numbers of Bose and Fermi degrees of freedom).In other words, while a higher-dimensional energy-momentum tensor was still required, its form atleast appeared less ontrived. Finally, Freund & Rubin [86℄ showed in 1980 that ompati�ation ofthe D = 11 model ould our in only two ways: to seven or four ompat dimensions, leaving four(or seven, respetively) marosopi ones. Not only did eleven-dimensional spaetime appear to beuniquely favoured for uni�ation, but it also split perfetly to produe the observed four-dimensionalworld. (The other possibility, of a marosopi seven-dimensional world, ould unfortunately not beruled out, and in fat at least one suh model was expliitly onstruted as well [87℄.) Buoyed by thesesuesses, eleven-dimensional supergravity appeared set by the mid 1980s as a leading andidate forthe hoped-for \theory of everything" (see [8℄, [12℄, [88℄ for reviews, and [89℄ for an extensive olletionof papers. A nontehnial introdution is given in [90℄.)A number of blemishes, however - one aestheti and three more pratial - have dampened thisinitial enthusiasm. Firstly, the ompat manifolds originally envisioned by Witten [84℄ (those ontain-ing the standard model) turned out not to generate quarks or leptons, and to be inompatible withsupersymmetry [8℄, [13℄. Their most suessful replaements are the 7-sphere and the \squashed" 7-sphere [12℄, desribed respetively by the symmetry groups SO(8) and SO(5)�SU(2). These groups,however, unfortunately do not ontain the minimum symmetry requirements of the standard model(SU(3)� SU(2)� U(1)). This is ommonly reti�ed by adding more matter �elds, the \ompositegauge �elds" [91℄, to the eleven-dimensional Lagrangian. Seondly, it is very diÆult to build hiral-ity (neessary for a realisti fermion model) into an eleven-dimensional theory [84℄, [92℄. A variety ofremedies have been proposed for this, inluding the ubiquitous additional higher-dimensional gauge�elds [73℄, [77℄, nonompat internal manifolds [93℄-[99℄, and extensions of Riemannian geometry[100℄-[102℄. Thirdly, D = 11 supergravity theory is marred by a large osmologial onstant in fourdimensions, whih is diÆult to remove, even by �ne-tuning [7℄, [8℄. Finally, quantization of thetheory leads inevitably to anomalies [89℄.Some of these diÆulties an be eased by desending to ten dimensions: hirality is easier to obtain[92℄, and many of the anomalies disappear [103℄. However, the introdution of hiral fermions leadsto new kinds of anomalies. And the primary bene�t of the D = 11 theory - its uniqueness - is lost,sine ten dimensions are not speially favoured, and the higher-energy theory does not break downnaturally into four marosopi and six ompat dimensions. (One an still �nd solutions in whihthis happens, but there is no reason why they should be preferred.) In fat, mostD = 10 supergravitymodels not only require ad ho higher-dimensional matter �elds to ensure proper ompati�ation,but entirely ignore gauge �elds arising from the Kaluza-Klein mehanism (ie., from symmetries ofthe ompat manifold), so that all the gauge �elds are e�etively put into the theory by hand [8℄.Kaluza's original aim of explaining fores in geometrial terms is thus abandoned ompletely.7



2.7 D = 10 Superstring TheoryA breakthrough in solving the uniqueness and anomaly problems of D = 10 theory oured whenGreen & Shwarz [104℄ and Gross et al. [105℄ showed that there were two, and only two ten-dimensional supergravity models in whih all anomalies ould be made to vanish: those based onthe groups SO(32) and E8 � E8 respetively. One again, extra terms (known as Chapline-Mantonterms) had to be added to the higher-dimensional Lagrangian [8℄. This time, however, the additionwas not ompletely arbitrary; the extra terms were those whih would appear anyway if the theorywere a low-energy approximation to ertain kinds of superstring theory.The state of the art in ompati�ed Kaluza-Klein theory, then, has shifted from supergravitytheories to superstring theories, the main signi�ane of the former now being as low-energy limits ofthe latter [89℄. Superstrings (supersymmetri generalizations of strings) avoid the generi preditionof tahyons that plagued the �rst string theories [106℄, but retain their best features, espeially thepossibility of an anomaly-free path to quantum gravity [107℄. In fat, their many virtues make themthe urrent favorite ontender for a \theory of everything" [108℄. Connetions have reently beenmade between ertain superstring states and extreme blak holes [14℄, and it has even been arguedthat superstrings an help resolve the long-standing blak hole information paradox [109℄.Something of a uniqueness problem has persisted for D = 10 superstrings in that the groupsSO(32) and E8 � E8 admit �ve di�erent string theories between them. But this diÆulty hasreently been addressed by Witten [376℄, who showed that it is possible to view these �ve theoriesas aspets of a single underlying theory, now known as M-theory (for \Membrane") [377℄. The low-energy limit of this new theory, furthermore, turns out to be D = 11 supergravity! So it appearsthat the preferred dimensionality of spaetime in ompati�ed Kaluza-Klein theory may be swithingbak to eleven.Perhaps the biggest obstale to a wider aeptane of these theories is the diÆulty of extratinglear-ut physial preditions from them. String theory is \promising . . . ," one worker has said,\. . . and promising, and promising" [110℄. M-theory, whih (unlike superstring theory) is not per-turbative, is even more opaque; Witten has suggested that the \M" might equally well stand for\Magi" or \Mystery" at present [378℄. We will not onsider these interesting developments furtherhere, direting the reader instead to the superstring reviews in [8℄, [111℄, [112℄ (a nontehnial aountmay be found in [113℄), or the reent reviews of M-theory in [378℄, [379℄.2.8 The Projetive ApproahCompati�ation of extra dimensions is not the only way to explain Kaluza's ylinder ondition.Another, less well-known approah goes bak to Veblen & Ho�mann [114℄ in 1931. These authorsshowed that the �fth dimension ould be \absorbed into" ordinary four-dimensional spaetime ifone replaed the lassial (aÆne) tensors of general relativity with projetive ones. Rather thanbeing regarded as new oordinates, the extra dimensions were e�etively demoted to visual aids.Beause they were not physially real, there was no need to explain why they were not observed.The prie for this resolution of the problem was that one had to alter the geometrial foundation ofEinstein's theory. This idea reeived attention from Jordan, Pauli and several others over the years[39℄, [115℄-[122℄. Early versions of the theory ran afoul of experimental onstraints on the Brans-Dike parameter ! and had to be ruled out as untenable [15℄. However the projetive approahhas been revived in at least two new formulations. That of Lessner [15℄ assigns the salar �eld apurely mirosopi meaning; this has interesting onsequenes for elementary partiles [123℄-[126℄.The other, due to Shmutzer [16℄-[18℄, endows the vauum with a speial kind of higher-dimensionalmatter, the \non-geometrizable substrate," thereby sari�ing Einstein's dream of reduing physisto geometry. This theory, however, does make a number of testable preditions [17℄, [127℄-[129℄ whih8



are so far ompatible with observation.2.9 The Nonompati�ed ApproahAn alternative to both the ompati�ed and projetive approahes is to take the extra dimensions atfae value, without neessarily ompatifying them, and assume that nature is only approximatelyindependent of them - muh as it was on Minkowski's fourth oordinate at nonrelativisti speeds. Inother words, one avoids having to explain why ylindriity should be exat by relaxing it in priniple.Of ourse, the question remains as to why nature should be so nearly ylindrial in pratie. If theextra dimensions are lengthlike, then one might try to answer this by supposing that partiles aretrapped near a four-dimensional hypersurfae by a potential well. Ideas of this kind have been aroundsine at least 1962 [130℄; for reent disussions see [131℄-[134℄.Con�ning potentials are not, however, an obvious improvement over ompati�ation mehanismsin terms of eonomy of thought. An alternative is to take Minkowski's example more literally andentertain the idea that extra dimensions, like time, might not neessarily be lengthlike. In this asethe explanation for the near-ylindriity of nature is to be found in the physial interpretation of theextra oordinates; ie., in the values of the dimension-transposing parameters (like ) needed to givethem units of length. The �rst suh proposal of whih we are aware is the 1983 \spae-time-mass"theory of Wesson [135℄, who suggested that a �fth dimension might be assoiated with rest mass viax4 = Gm=2. The hief e�et of this new oordinate on four-dimensional physis was that partilerest mass, usually assumed to be onstant, varied with time. The variation was, however, small andquite onsistent with experiment. This model has been studied in some detail, partiularly withregard to its onsequenes for astrophysis and osmology, by Wesson [19℄, [136℄-[139℄ and others[140℄-[148℄, [149℄-[158℄, [159℄-[163℄, and has been extended to more than �ve dimensions by Fukui[164℄, [165℄, with the onstants ~ and e playing roles analogous to  and G.Variable gravity theories are, of ourse, not new. What is new in the models just desribed -and what is important about nonompati�ed Kaluza-Klein theory in priniple - is not so muh thepartiular physial interpretation one attahes to the new oordinates, but the bare fat that physisis allowed to depend on them at all. It is learly of interest to study the higher-dimensional Einsteinequations with a general dependene on the extra oordinates; ie., without any preoneived notionsas to their physial meaning. A pioneering e�ort in this diretion was made in 1986 by Yoshimura[166℄, who however onsidered only the ase where the d-dimensional part of the (4 + d)-spae oulddepend on the new oordinates. The general theory, in whih any part of the metri an depend onthe �fth oordinate, has been explored reently by Wesson and others [19℄-[26℄, and its impliationsfor osmology [167℄-[170℄, [171℄-[179℄ and astrophysis [180℄-[185℄, [186℄-[194℄ have beome the fousof a growing researh e�ort. As this branh of Kaluza-Klein theory has not yet been reviewed in aomprehensive manner, we propose to devote speial attention to it in this report. Our intentionis to ompare and ontrast this branh of the subjet with other ones, however, so we will makefrequent ontat with the ompati�ed and (to a lesser extent) projetive theories.3 The Kaluza MehanismKaluza uni�ed eletromagnetism with gravity by applying Einstein's general theory of relativity to a�ve-, rather than four-dimensional spaetime manifold. In what follows, we onsider generalizationsof his proedure that may be new to some readers, so it will be advantageous to briey review themathematis and underlying assumptions here.
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3.1 Matter from GeometryThe Einstein equations in �ve dimensions with no �ve-dimensional energy-momentum tensor are:ĜAB = 0 ; (1)or, equivalently: R̂AB = 0 ; (2)where ĜAB � R̂AB � R̂ĝAB=2 is the Einstein tensor, R̂AB and R̂ = ĝABR̂AB are the �ve-dimensionalRii tensor and salar respetively, and ĝAB is the �ve-dimensional metri tensor. (Throughoutthis report apital Latin indies A, B, . . . run over 0, 1, 2, 3, 4, and �ve-dimensional quantities aredenoted by hats.) These equations an be derived by varying a �ve-dimensional version of the usualEinstein ation: S = 116�Ĝ Z R̂p�ĝd4xdy ; (3)with respet to the �ve-dimensional metri, where y = x4 represents the new (�fth) oordinate andĜ is a \�ve-dimensional gravitational onstant."The absene of matter soures in these equations reets what we have emphasized as Kaluza's�rst key assumption (i), inspired by Einstein: that the universe in higher dimensions is empty. Theidea is to explain matter (in four dimensions) as a manifestation of pure geometry (in higher ones).If, instead, one introdued new kinds of higher-dimensional matter, then one would have gained littlein eonomy of thought. One would, so to speak, be getting Weinberg's \stone soup" [72℄ from a an.3.2 A Minimal Extension of General RelativityThe �ve-dimensional Rii tensor and Christo�el symbols are de�ned in terms of the metri exatlyas in four dimensions: R̂AB = �C�̂CAB � �B�̂CAC + �̂CAB�̂DCD � �̂CAD�̂DBC ;�̂CAB = 12 ĝCD(�AĝDB + �B ĝDA � �DĝAB) : (4)Note that, aside from the fat that tensor indies run over 0-4 instead of 0-3, all is exatly as itwas in Einstein's theory. We have emphasized this as the seond key feature (ii) of Kaluza's approahto uni�ation.Everything now depends on one's hoie for the form of the �ve-dimensional metri. In general,one identi�es the ��-part of ĝAB with g�� (the four-dimensional metri tensor), the �4-part withA� (the eletromagneti potential), and the 44-part with � (a salar �eld). A onvenient way toparametrize things is as follows:(ĝAB) = � g�� + �2�2A�A� ��2A���2A� �2 � ; (5)where we have saled the eletromagneti potential A� by a onstant � in order to get the rightmultipliative fators in the ation later on. (Throughout this report, Greek indies �, �, . . . run10



over 0, 1, 2, 3, and small Latin indies a, b, . . . run over 1, 2, 3. The four-dimensional metri signatureis taken to be (+ - - -), and we work in units suh that  = 1. In addition, for onveniene andaord with other work, we set ~ = 1 in x3, and G = 1 in in x7 and x8.)3.3 The Cylinder ConditionIf one then applies the third key feature (iii) of Kaluza's theory (the ylinder ondition), whih meansdropping all derivatives with respet to the �fth oordinate, then one �nds, using the metri (5) andthe de�nitions (4), that the ��-, �4-, and 44-omponents of the �ve-dimensional �eld equation (2)redue respetively to the following �eld equations [15℄, [41℄ in four dimensions:G�� = �2�22 TEM�� � 1��r�(���)� g�����r�F�� = �3���� F�� ; �� = �2�34 F��F �� ; (6)where G�� � R���Rg��=2 is the Einstein tensor, TEM�� � g��FÆF Æ=4�F �F� is the eletromagnetienergy-momentum tensor, and F�� � ��A� � ��A�. There are a total of 10 + 4 + 1 = 15 equations,as expeted sine there are �fteen independent elements in the �ve-dimensional metri (5).3.4 The Case � = onstantIf the salar �eld � is onstant throughout spaetime, then the �rst two of eqs. (6) are just theEinstein and Maxwell equations:G�� = 8�G�2TEM�� ; r�F�� = 0 ; (7)where we have identi�ed the saling parameter � in terms of the gravitational onstant G (in fourdimensions) by: � � 4p�G : (8)This is the result originally obtained by Kaluza and Klein, who set � = 1. (The same thing hasdone by some subsequent authors employing \speial oordinate systems" [9℄, [195℄.) The ondition �= onstant is, however, only onsistent with the the third of the �eld equations (6) when F��F �� = 0,as was �rst pointed out by Jordan [39℄, [40℄ and Thiry [41℄. The fat that this took twenty years tobe aknowledged is a measure of the deep suspiion with whih salar �elds were viewed in the �rsthalf of this entury.Nowadays the same derivation is usually written in variational language. Using the metri (5) andthe de�nitions (4), and invoking the ylinder ondition not only to drop derivatives with respet toy, but also to pull R dy out of the ation integral, one �nds that eq. (3) ontains three omponents[10℄: S = � Z d4xp�g�� R16�G + 14�2F��F �� + 23�2 �������2 � ; (9)where G is de�ned in terms of its �ve-dimensional ounterpart Ĝ by:11



G � Ĝ= Z dy ; (10)and where we have used equation (8) to bring the fator of 16�G inside the integral. As before, ifone takes � = onstant, then the �rst two omponents of this ation are just the Einstein-Maxwellation for gravity and eletromagneti radiation (saled by fators of �). The third omponent is theation for a massless Klein-Gordon salar �eld.The fat that the ation (3) leads to (9), or - equivalently - that the soureless �eld equations(2) lead to (6) with soure matter, onstitutes the entral mirale of Kaluza-Klein theory. Four-dimensional matter (eletromagneti radiation, at least) has been shown to arise purely from thegeometry of empty �ve-dimensional spaetime. The goal of all subsequent Kaluza-Klein theories hasbeen to extend this suess to other kinds of matter.3.5 The Case A� = 0: Brans-Dike TheoryIf one does not set � = onstant, then Kaluza's �ve-dimensional theory ontains besides eletro-magneti e�ets a Brans-Dike-type salar �eld theory, as beomes lear when one onsiders thease in whih the eletromagneti potentials vanish, A� = 0. Without the ylinder ondition, thiswould be no more than a hoie of oordinates, and would not entail any loss of algebrai generality.(It would be exatly analogous to the ommon proedure in ordinary eletrodynamis of hoosingfour-spae oordinates in whih either the eletri or magneti �eld disappears.) With the ylinderondition, however, we are e�etively working in a speial set of oordinates, so that the theory isno longer invariant with respet to general (ie., �ve-dimensional) oordinate transformations. Therestrition A� = 0 is, therefore, a physial and not merely mathematial one, and restrits us to the\graviton-salar setor" of the theory.This is aeptable in some ontexts - in homogeneous and isotropi situations, for example, whereo�-diagonal metri oeÆients would pik out preferred diretions; or in early-universe models whihare dynamially dominated by salar �elds. Negleting the A�-�elds, then, eq. (5) beomes:(ĝAB) = � g�� 00 �2 � ; (11)With this metri, the �eld equations (2), and Kaluza's assumptions (i) - (iii) as before, the ation(3) redues to: S = � 116�G Z d4xp�gR� : (12)This is the speial ase ! = 0 of the Brans-Dike ation [196℄:SBD = � Z d4xp�g� R�16�G + !�������2 �+ Sm ; (13)where ! is the dimensionless Brans-Dike onstant and the term Sm refers to the ation assoiatedwith any matter �elds whih may be oupled to the metri or salar �eld.The value of ! is of ourse onstrained to be greater than �500 by observation [197℄, so this simplemodel is ertainly not viable, in the present era at least. One an however evade this limit by addinga nonzero potential V(�) to the above ation, as in extended ination [198℄ and other theories [199℄,[200℄; or by allowing the Brans-Dike parameter ! to vary as a funtion of �, as in hyperextended[201℄ and other inationary models [202℄. 12



3.6 Conformal ResalingOne an also re-formulate the problem by arrying out a Weyl, or onformal resaling of the metritensor. Conformal fators have begun to appear frequently in papers on Kaluza-Klein theory, butthey have as yet reeived little attention in reviews of the subjet, so we will disuss them brieyhere, referring the reader to the literature for details.The extra fator of � in the ation (9) above implies that, stritly speaking, the salar �eld wouldhave to be onstant throughout spaetime [10℄, [13℄ in order for the gravitational part of the ationto be in anonial form. Some authors [9℄, [195℄ have in fat set it equal to one by de�nition, thoughthis is of ourse not a generally ovariant proedure. The o�ending fator an however be removedby onformally resaling the �ve-dimensional metri:ĝAB ! ĝ0AB = 
2ĝAB ; (14)where 
2 > 0 is the onformal (or Weyl) fator, a funtion of the �rst four oordinates only (assumingKaluza's ylinder ondition). This is one step removed from the simplest possible realization ofKaluza's idea. In ompati�ed and projetive theories, however, there an be no physial objetion tosuh a proedure sine it takes plae \in higher dimensions" whih are not aessible to observation.Questions only arise in the proess of dimensional redution; ie., in interpreting the \real," four-dimensional quantities in terms of the resaled �ve-dimensional ones.The four-dimensional metri tensor is resaled by the same fator as the �ve-dimensional one(g�� ! g0�� = 
2g��), and this has the following e�et on the four-dimensional Rii salar [203℄:R! R0 = 
�2�R + 6�

 � : (15)A onvenient parametrization is obtained by making the trivial rede�nition �2 ! � and thenintroduing the onformal fator 
2 = ��1=3, so that the �ve-dimensional metri reads:(ĝ0AB) = ��1=3� g�� + �2�A�A� ��A���A� � � ; (16)The same proedure as before then leads [8℄, [12℄, [13℄ to the following onformally resaled ationinstead of eq. (9) above:S 0 = � Z d4xp�g0� R016�G + 14�F 0��F 0�� + 16�2 �0���0���2 � ; (17)where primed quantities refer to the resaled metri (ie., �0�� = g0�����), and G and � are de�nedas before. The gravitational part of the ation then has the onventional form, as desired.The Brans-Dike ase, obtained by putting A� = 0 in the metri, is also modi�ed by the preseneof the onformal fator. One �nds (again making the rede�nition �2 ! � and using 
2 = ��1=3)that the ation (12) beomes [13℄:S 0 = � Z d4xp�g0� R016�G + 16�2 �0���0���2 � ; (18)In terms of the \dilaton" �eld � � ln�/(p3�), this ation an be written:S 0 = � Z d4xp�g0� R016�G + 12�0���0��� ; (19)13



whih is the anonial ation for a minimally oupled salar �eld with no potential [204℄.3.7 Conformal AmbiguityThe question of onformal ambiguity arises when we ask, \Whih is the real four-dimensional metri(ie., the one responsible for Einstein's gravity) - the original g��, or the resaled g0��?" The issue wasalready raised at least as far bak as 1955 by Pauli [119℄. (The resaled metri is sometimes referred toin the literature as the \Pauli metri," as opposed to the unresaled \Jordan metri.") Most authorshave worked with the traditional (unresaled) metri, if indeed they have troubled themselves overthe matter at all [205℄. Others [206℄, [207℄ have onsidered the interesting idea of oupling visiblematter (inluding that involved in the lassial tests of general relativity) to the Jordan metri, butallowing dark matter to ouple to a resaled Pauli metri. In reent years, a variety of new argumentshave been advaned in favor of regarding the resaled metri as the true \Einstein metri" for alltypes of matter in ompati�ed Kaluza-Klein theory. The following paragraph is intended as a briefreview of these; many are disussed more thoroughly in [205℄.The �rst use of onformal resaling to pik out \physial �elds" was in ertain ten-dimensionalsupergravity [208℄ and superstring [209℄ models of the early 1980s. It then appeared in work onthe quantum aspets of Kaluza-Klein theory [210℄, and on the stability of ompati�ed Kaluza-Kleinosmologies [211℄, [212℄. In these papers it was asserted that onformal ambiguity a�eted the physisat the quantum but not the lassial level. This was supported by a demonstration [213℄ that themass of a �ve-dimensional Kaluza-Klein monopole was invariant with respet to onformal resaling,although it was speulated in this paper that the addition of matter �elds would ompliate thesituation. Cho [207℄ on�rmed this suspiion by showing expliitly that the onformal invariane ofthe Brans-Dike ation (13) would be broken for Sm = 0. This resulted in di�erent matter ouplingsto the metri for di�erent onformal fators, whih would manifest themselves as \�fth fore"-typeviolations of the weak equivalene priniple [214℄. He argued in addition that only one onformalfator - the fator ��1=3 used above - ould allow one to properly interpret the metri as a masslessspin-two graviton [207℄; and moreover that without this fator the kineti energy of the salar �eldwould be unbounded from below, making the theory unstable [61℄. This last point has also beenemphasized by Sokolowski and others [205℄, [215℄, [216℄. (Note that the onformal fator p' used bythese authors is the same as the one disussed above; the exponent depends on whether one resalesthe �ve-, or only the four-dimensional metri. The salar ' is related to � simply by ' = ��3=2.) Ithas also been laimed that onformal resaling is neessary in sale-invariant Kaluza-Klein osmology[217℄ if one is to properly interpret the e�etive four-dimensional Friedmann-Robertson-Walker salefator. A reent disussion of onformal ambiguity in ompati�ed Kaluza-Klein theory is found in[218℄.There is also something muh like a onformal resaling of oordinates in projetive Kaluza-Kleintheory, notably in the work of Shmutzer after 1980 [16℄, [17℄, [127℄, [128℄, where it is introduedin order to eliminate unwanted seond-order salar �eld terms from the generalized gravitational�eld equations. In nonompati�ed Kaluza-Klein theory, by ontrast, there has been no disussionof onformal resaling. This is largely beause the extra dimensions are regarded as physial (ifnot neessarily lengthlike or timelike). The �ve-dimensional metri, in e�et, beomes aessible (inpriniple) to observation, and onformally transforming it at will may no longer be so innouous.We will not onsider the issue further in this report; interested readers are direted to Sokolowski'spaper [205℄.
14



4 Compati�ed TheoriesSo far we have introdued Kaluza's theory, with its ylinder ondition, but have deliberately post-poned disussion of ompati�ation beause we wish to emphasize that it is logially distint fromylindriity, and in partiular that it is only one mehanism by whih to explain the apparentlyfour-dimensional nature of the world. We now turn to ompati�ed Kaluza-Klein theory, but keepour disussion short as this subjet has been thoroughly reviewed elsewhere ([3℄-[7℄, [8℄-[14℄, [195℄).4.1 Klein's Compati�ation MehanismThe somewhat ontrived nature of Kaluza's assumption, that a �fth dimension exists but that nophysial quantities depend upon it, has struk generations of uni�ed �eld theorists as inadequate.Klein arrived on the sene during the tremendous exitement surrounding the birth of quantumtheory, and perhaps not surprisingly had the idea [2℄, [36℄ of explaining the lak of dependene bymaking the extra dimension very small. (The story that this was suggested to him on hearing aolleague address him by his last name has, so far as we know, no basis in historial fat.)Klein assumed that the �fth oordinate was to be a lengthlike one (like the �rst three), andassigned it two properties: (1) a irular topology (S1); and (2) a small sale. Under property (1),any quantity f(x; y) (where x = (x0, x1, x2, x3) and y = x4) beomes periodi; f(x; y) = f(x; y+2�r)where r is the sale parameter or \radius" of the �fth dimension. Therefore all the �elds an beFourier-expanded:g��(x; y) = n=1Xn=�1 g(n)�� (x)einy=r ; A�(x; y) = n=1Xn=�1A(n)� (x)einy=r ; (20)
�(x; y) = n=1Xn=�1�(n)einy=r ;where the supersript (n) refers to the nth Fourier mode. Thanks to quantum theory, these modesarry a momentum in the y-diretion of the order jnj=r. This is where property (2) omes in: ifr is small enough, then the y-momenta of even the n = 1 modes will be so large as to put thembeyond the reah of experiment. Hene only the n = 0 modes, whih are independent of y, will beobservable, as required in Kaluza's theory.How big ould the sale size r of a fourth spatial dimension be? The strongest onstraints haveome from high-energy partile physis, whih probes inreasingly higher mass sales and orrespond-ingly smaller length sales (the Compton wavelength of massive modes is of the order M�1). Exper-iments of this kind [55℄ presently onstrain r to be less than an attometer in size (1am = 10�18m).Theorists often set r equal to the Plank length `pl � 10�35m, whih is both a natural value andsmall enough to guarantee that the mass of any n = 0 Fourier modes lies beyond the Plank massmpl � 1019 GeV.In general, one identi�es Kaluza's �ve-dimensional metri (5) with the full (Fourier-expanded)metri ĝAB(x; y), higher modes and all. One then makes what is known in ompati�ed theoryas the \Kaluza-Klein ansatz," whih onsists in disarding all massive (n 6= 0) Fourier modes, asjusti�ed above. In the �ve-dimensional ase, the Kaluza-Klein ansatz amounts to simply droppingthe y-dependeny of g��, A�, and �, giving the e�etive four-dimensional \low-energy" theory of thegraviton g(0)�� , photon A(0)� and salar �(0). For higher dimensions, though, the relationship betweenthe full metri and the metri obtained with the \Kaluza-Klein ansatz" is more ompliated, as has15



been emphasized by Du� et al. [11℄, [12℄. These authors also stress the di�erene between these twometris and a third important metri in Kaluza-Klein theory, the ground state metri hĝABi whihis the vauum expetation value of the full metri ĝAB(x; y), and determines the topology of theompat spae. In the �ve-dimensional ase desribed above, whih is topologially M4 � S1, thislooks like: (hĝABi) = � ��� 00 �1 � ; (21)where ��� is the four-dimensional Minkowski spae metri.4.2 Quantization of ChargeThe expansion of �elds into Fourier modes suggests a possible mehanism to explain harge quan-tization, and it is interesting to see what beame of this idea [8℄. One begins by introduing �ve-dimensional matter into the theory, leaving aside for the moment questions as to what this wouldorrespond to physially. The simplest kind of matter is a massless �ve-dimensional salar �eld ̂(x; y). Its ation would have a kineti part only:S ̂ = � Z d4xdyp�g�A ̂�A ̂ : (22)The �eld an be expanded like those in eq. (20): ̂(x; y) = n=1Xn=�1  ̂(n)einy=r : (23)When this expansion is put into the ation (22), one �nds (using eq. (16)) the following result [8℄,analogous to eq. (9):S ̂ = ��Z dy�Xn Z d4xp�g � ��� + in�A�r � ̂(n)��� + in�A�r � ̂(n)� n2�r2  ̂(n)2� ; (24)From this ation one an read o� both the harge and mass of the salar modes  ̂(n). Comparisonwith the minimal oupling rule �� ! ��+ ieA� of quantum eletrodynamis (where e is the eletronharge) shows that in this theory the nth Fourier mode of the salar �eld  ̂ also arries a quantizedharge: qn = n�r �� Z dy��1=2 = np16�Grp� ; (25)where we have normalized the de�nition of A� in the ation (17) by dividing out the fator (� R dy)1=2,and made use of the de�nitions (8) and (10) for � and G respetively. As a orollary to this resultone an also ome lose to prediting the value of the �ne struture onstant, simply by identifyingthe harge q1 of the �rst Fourier mode with the eletron harge e. Taking rp� to be on the order ofthe Plank length `pl = pG, one has: 16



� � q214� � (p16�G=pG)24� = 4 : (26)(An improved determination of rp� would presumably hit loser to the mark.) The possibility ofthus explaining an otherwise \fundamental onstant" would have made ompati�ed �ve-dimensionalKaluza-Klein theory very attrative.However, the masses of the salar modes are not at all ompatible with these ideas. These aregiven by the square root of the oeÆient of the  ̂(n)2-term:mn = jnjrp� : (27)If rp� � `pl as we assumed, then the eletron mass m1 (orresponding to the �rst Fourier mode)would be `�1pl ; ie., the Plank mass mpl � 1019 GeV, rather than 0.5 MeV. This disrepany ofsome twenty-two orders of magnitude between theory and observation played a large role in theabandonment of �ve-dimensional Kaluza-Klein theory.In modern ompati�ed theories, one avoids this problem by doing three things [8℄: (1) identifyingobserved (light) partiles like the eletron with the n = 0, rather than the higher modes of the Fourierexpansion above. From eq. (27), these partiles therefore have zero mass at the level of the �eldequations. However, one then invokes: (2) the mehanism of spontaneous symmetry-breaking tobestow on them them the modest masses required by observation. From eq. (25) above, there isalso the problem of explaining how the n = 0 modes an have nonzero harge (or, more generally,nonzero ouplings to the gauge �elds). This is solved by: (3) going to higher dimensions, wheremassless partiles are no longer \singlets of the gauge group" orresponding to the ground state (eg.,the 44-part of the metri (21) above). We look at this proedure briey in the next setion.The other way to avoid the problems of ompati�ed �ve-dimensional Kaluza-Klein theory is, ofourse, to look at projetive theories, or indeed to loosen the restrition of ompati�ation on the�fth dimension altogether. These approahes probably mean giving up the ready-made explanationfor harge quantization desribed above.4.3 Extension to Higher DimensionsThe key to extending the Kaluza-Klein formalism to strong and weak nulear interations lies inreognizing that eletromagnetism has been e�etively inorporated into general relativity by addingU(1) loal gauge invariane to the theory, in the form of loal oordinate invariane with respetto y = x4. Assuming the extra oordinate has a irular topology and a small sale, the theory isinvariant under transformations: y ! y0 = y + f(x) ; (28)where x stands for the four-spae oordinates x0, x1, x2, x3. With the aid of the usual tensortransformation law (in �ve dimensions):ĝAB ! ĝ0AB = �xC�x0A �xD�x0B ĝCD ; (29)one then �nds that the only hange to the metri (5) is:A� ! A0� = A� + ��f(x) ; (30)17



whih is just a U(1) loal gauge transformation. In other words the theory is loally U(1) gaugeinvariant. It is thus not surprising that eletromagnetism ould be ontained in �ve-dimensionalgeneral relativity.To extend the same approah to more ompliated symmetry groups, one goes to higher dimensions[8℄. The metri orresponding to the \Kaluza-Klein ansatz" (n = 0 modes only) an be written (f.eq. (5)): �ĝ(0)AB� = � g�� + ~g��K�i Ai�K�jAj� ~g��K�i Ai�~g��K�i Ai� ~g�� � ; (31)where ~g�� is the metri of the d-dimensional ompat spae. Indies �, �, . . . run from 1 to d, whileA, B, . . . run from 0 to (3 + d), and �, �, . . . run from 0 to 3 as usual. The K�i are a set of n linearlyindependent Killing vetors for the ompat manifold (i = 1, . . . , n). Analogously to eq. (28) onethen assumes that the theory is loally invariant under transformations:y� ! y0� = y� + nXi=1 "i(x)K�i ; (32)where the "i(x) are a set of n in�nitesimal parameters. Beause Killing vetors by de�nition satisfy:�K�i�y� ~g�� + �K�i�y� ~g�� +K�i �~g���y� = 0 ; (33)the transformation law (29) leaves the ~g��-part of the metri untouhed, and the only e�et on eq.(31) is: Ai� ! Ai0� = Ai� + ��"i(x) ; (34)whih is a loal gauge transformation whose gauge group is the isometry group (G, say) of theompat manifold. Thus one might hope that higher-dimensional general relativity ould ontainany gauge theory.The larger symmetry of the higher-dimensional mehanism also allows for nonzero ouplings ofthe n = 0 modes to the gauge �elds; ie., for \harged" massless partiles (whih, as we saw, wasimpossible in the �ve-dimensional ase). Massless salar �elds �a(x) in the adjoint representation ofthe gauge group, for example, an be introdued [8℄ via:��a = �a(x)K�a (y) ; (35)and these in general have nonzero ouplings to the gauge �elds beause the K�a (y) are not ovariantlyonstant.4.4 Higher-Dimensional MatterIt is ruial to realize, however, that the above \ansatz" metri (31) does not satisfy Einstein'sequations in 4 + d dimensions unless the Killing vetors are independent of fyg, the extra oordinates[8℄ - ie., unless the ompat manifold is at [7℄. The ground state metri (f. eq. (21)) is:(hĝABi) = � ��� 00 ~g��(y) � : (36)18



The vauum Einstein equations are R̂AB � R̂ĝAB=2 = 0. Sine hĝ��i = ��� is at, R̂�� = 0.Therefore, from the ��-omponents of the �eld equations, R̂ must vanish. But then the ��-parts ofthe same equations imply that R̂�� = 0; ie., that ~g�� must also be at. In what is perhaps a symptomof the split that has developed sine Klein between the partile physis and general relativity sides ofhigher-dimensional uni�ation researh, early workers tended to ignore this \onsisteny problem"[11℄, [12℄, and plaed no restritions on the ompat manifold while ontinuing to use the metri(31). Reently Cho [61℄-[64℄ has raised related questions about whether the \zero modes" might notbeome massive (and fyg-dependent) in the event of spontaneous symmetry-breaking, and has evensuggested \kiking away the ladder" of Klein's Fourier modes entirely, basing dimensional redutiona priori on isometry instead.It is now widely reognized [13℄ that onventional ompati�ation of d extra spatial dimensions(where d > 1) requires either (1) expliit higher-dimensional matter terms, whih an indue \spon-taneous ompati�ation" by imposing onstant urvature on the ompat manifold [70℄, [71℄; or(2) other modi�ations of the higher-dimensional theory, suh as the inlusion of torsion [65℄-[68℄ orhigher-derivative (eg. R2) terms [69℄. Most higher-dimensional ompati�ed Kaluza-Klein theoriesrely on higher-dimensional matter of one kind or another. For example, in Freund-Rubin om-pati�ation [86℄, whih is the basis of eleven-dimensional supergravity, one introdues a third-rankantisymmetri tensor �eld ÂBCD with �eld strength:F̂ABCD � �AÂBCD � �BÂACD + �CÂABD � �DÂABC ; (37)and free ation given by: SÂ = � 1384�G Z d(4+d)xp�gF̂ABCDF̂ABCD : (38)The e�et of this [13℄ is to add an expliit energy-momentum tensor to the right-hand side of thehigher-dimensional Einstein equations (1):T̂AB = � 148�G�F̂CDEAF̂CDEB � 18 F̂CDEF F̂CDEF ĝAB� ; (39)The matter �elds required to ahieve ompati�ation are not the end of the story, however. Othersare in general needed if the theory is to ontain the full gauge group of the standard model (inludingstrong and weak interations). Witten [84℄ has shown that this requires a theory of at least elevendimensions (inluding the four marosopi ones). While there are an in�nite number of ompatseven-dimensional manifolds whose isometry groups G � SU(3)� SU(2)� U(1), none of them giverise to realisti quark and lepton representations [8℄, [13℄. It is possible to obtain quarks and leptonsfrom other manifolds suh as the 7-sphere and the \squashed" 7-sphere [12℄. The symmetry groupsof these manifolds (SO(8) and SO(5)�SU(2) respetively) are, however, not large enough to ontainthe standard model, and additional \omposite" matter �elds [13℄, [91℄ are therefore required.Expliit higher-dimensional �elds may also be required to inorporate hirality into eleven-dimen-sional ompati�ed theory [7℄, [73℄, [77℄ (this is diÆult in an odd number of dimensions). Two othershemes by whih this might be aomplished are modi�ations of Riemannian geometry [100℄-[102℄and nonompat internal manifolds [93℄-[99℄. Thus in the D = 11 \hirality problem" one �nds againa hoie between sari�ing either (i) the equation \Matter=Geometry;" (ii) the geometrial basisof Einstein's theory; or (iii) ylindriity. Compati�ed theory has in general been haraterized by areadiness to drop (i).We onlude this setion by noting that the situation (with regard to non-geometrized matter)does not improve in ten-dimensional ompati�ed theory; in fat, in many ases a six-dimensional19



internal manifold with no isometries is used [8℄, whih means that all the matter is e�etively putin by hand, marking a omplete abandonment of the original Kaluza programme. Besides ensuringompati�ation and making room for fermions, extra terms in the ten-dimensional Lagrangianalso play a role in suppressing anomalies. In the two most popular D = 10 theories, for example(those based on the symmetry groups SO(32) [104℄ and E8 � E8 [105℄), this is aomplished byChapline-Manton terms [8℄. To the extent that these terms arise naturally in the low-energy limit often-dimensional superstring theory, however, they are less arbitrary than some of the others we havementioned. There is no doubt that superstrings urrently o�er, within the ontext of ompati�edKaluza-Klein theory, the best hope for a uni�ed \theory of everything" [89℄, [108℄. Whether theompati�ed approah is the best one remains - as we hope to show in the rest of this report - anopen question.5 Projetive TheoriesProjetive theories were designed to emulate the suesses of Kaluza's �ve-dimensional theory withoutthe epistemologial burden of a real �fth dimension. Early models did this too well: like Kaluza's(with no dependene on the �fth oordinate and no added \higher-dimensional matter" �elds) theygave bak ! = 0 Brans-Dike theory when the eletromagneti potentials were swithed o�. Thisontradited time-delay measurements like that of the Martian Viking lander [197℄. There were otherproblems as well [16℄. Modern projetive theories [15℄-[18℄ attempt to overome these shortomingsin at least two di�erent ways.5.1 A Theory of Elementary PartilesLessner [15℄ has suggested that, although experiments rule out a marosopi Brans-Dike-type salar�eld, the theory might still be appliable on mirosopi sales, and ould be used to desribe theinternal struture of elementary partiles. He begins with the same �ve-dimensional �eld equations(2) (now interpreted as projetor equations), and obtains the same four-dimensional �eld equations(6), exept that the onstant G is replaed by \B," whih beomes essentially a free parameter ofthe theory. A solution (g��, F��, �) of the �eld equations is alled a \partile" if it satis�es ertainonditions on symmetry, positivity and asymptoti behaviour [15℄. Some of the properties of thesepartiles are explored in [123℄-[126℄. The theory is only appliable to marosopi phenomena when� = 1 and the third of the �eld equations (6) is omitted.5.2 Projetive Uni�ed Field TheoryShmutzer has taken an alternate approah sine 1980 in his \projetive uni�ed �eld theory" orPUFT [16℄-[18℄ by expliitly introduing \non-geometrizable matter" (the so-alled \substrate"). Inordinary Kaluza-Klein theory this would orrespond to higher-dimensional matter and be representedin the �ve-dimensional Einstein equations (1) by a nonzero energy-momentum tensor T̂AB; in theprojetive theory one has instead an energy projetor �̂AB:ĜAB = 8�Ĝ�̂AB : (40)There is also a onformal resaling of the four-dimensional metri, as mentioned earlier:g�� ! g0�� = e��g�� ; (41)20



where � is a new salar �eld. Eqs. (40) break down, analogously to the �ve-dimensional ones (2), tothe following set of equations in four dimensions:G�� = 8�G(TEM�� + ��� + ���) ; r�H�� = J� ;�� = 8�G�23#+ 12B��H��� ; (42)where TEM�� is the eletromagneti energy-momentum tensor as before, and where there are also twonew energy-momentum tensors: the substrate energy tensor ��� = �̂�� and the salari energy tensor��� de�ned by: ��� = � 316�G������� � 12g������� : (43)The other terms in eqs. (42) are the eletri four-urrent density J�, the eletromagneti �eldstrength tensor B��, the indution tensor H�� = e3�B�� (the fator e3� ats here as a kind of \salaridieletriity"), and one more new quantity, the salari substrate density:# = e�� �̂AA � 32��� : (44)The onservation of energy r̂A�̂AB = 0 implies not only onservation of four-urrent (r�J� = 0)but also onservation of substrate energy:r���� = �B��J� + #r�� : (45)The existene of substrate and salari matter in PUFT gives rise to phenomena suh as \salaripolarization" of the vauum, and violations of the weak equivalene priniple for time-dependentsalari �elds. These an be quanti�ed in terms of a \salarism parameter" , de�ned as the ratioof salari substrate density to the density � of ordinary matter: � #=� : (46)This number beomes in pratie the primary free parameter of the theory, showing up in PUFT-based osmologial models [127℄, [129℄, equivalene priniple-type experiments [128℄, and Solar Sys-tem tests (perihelion shift, light deetion and time delay) [17℄. Experimental onstraints on thetheory take the form of upper limits on the size of .In omparing these projetive theories to the ompati�ed Kaluza-Klein theories of the last se-tion, one ould perhaps summarize as follows: Kaluza's uni�ed theory as it stands is an elegant (nohigher-dimensional matter) and minimal extension of general relativity, but su�ers from the defetof a very ontrived-looking ylinder ondition. Five-dimensional ompati�ed theory, beginning withKlein, repairs this aw (and even o�ers the possibility of explaining harge quantization) but turnsout to disagree radially with observation. To overome this problem within the ontext of ompat-i�ed theory, one has to go to higher dimensions and either introdue higher-dimensional matter orhigher-derivative terms to the Einstein ation, if one wishes to obtain satisfatory ompati�ation.Projetive theory o�ers an alternative way to \explain" the ylinder ondition, and an (unlike om-pati�ed theory) be formulated in a way that is ompatible with experiment using only one extra\dimension." This omes at the prie, however, not only of modifying the geometrial foundationof Einstein's theory, but (in Shmutzer's ase) of introduing a \non-geometrizable substrate," or21



(in Lessner's ase) of limiting one's ambitions to mirosopi phenomena. Overall, the projetiveapproah does not appear to us to be an improvement over ompati�ed theory.6 Nonompati�ed TheoriesAn alternative is to stay with the idea that the new oordinates are physial, but to generalizethe ompati�ed approah by relaxing the ylinder ondition [19℄-[26℄, instead of restriting thetopology and sale of the �fth dimension in an attempt to satisfy it exatly. This means thatphysial quantities, inluding in partiular those derived from the metri tensor, will depend onthe �fth oordinate. In fat it is preisely this dependene whih allows one to obtain not onlyeletromagneti radiation, but matter of a very general kind from geometry via the higher-dimensional�eld equations. The equations of motion, too, are modi�ed by dependene on extra oordinates. Wereview these fats in the next few setions.Of ourse, the �fth dimension might also be expeted to appear elsewhere in physis, and oneof the primary hallenges of nonompati�ed theory is to explain why its e�ets have not beennotied so far. Why, for example, have experiments suh as those mentioned earlier [55℄ been ableto restrit the size of any extra dimensions to below the attometer sale? In nonompati�ed theory,the answer is that extra oordinates are not neessarily lengthlike, as these experiments assume.Following Minkowski's example, one an imagine oordinates of other kinds, saled by appropriatedimension-transposing parameters (like ) to give them units of length. We review this importantissue, and the evidene for the hypothesis that a �fth dimension might be physially related to restmass, at the end of x6. For the moment, however, we put o� questions of interpretation and begin bysimply seeing how far Kaluza's �ve-dimensional uni�ed �eld theory an be taken when the ylinderondition is dropped.6.1 The MetriWithout ylindriity, there is no reason to ompatify the �fth dimension, so this approah is properlyalled \nonompati�ed." Nonompat extra dimensions have also been onsidered in ompati�edKaluza-Klein theory by Wetterih and others [93℄-[99℄ as a way to bring hiral fermions into the theoryand arrange for a vanishing four-dimensional osmologial onstant. These authors, however, retainKlein's mehanism of harmoni expansion, whih in turn means that the ompat manifold musthave �nite volume. In the fully nonompati�ed approah we wish to make no a priori assumptionsabout the nature of the extra-dimensional manifold.We begin with the same �ve-dimensional metri (5) as before, but hoose oordinates suh thatthe four omponents of A� vanish. Sine we are no longer imposing ylindriity on our solutions,this entails no loss of algebrai generality; it is analogous to the ommon strategy in eletromagnetitheory of hoosing oordinates suh that either the eletri or magneti �eld vanishes. We also eshewany onformal fator here, preferring to treat the �fth dimension on the same footing as the otherfour. The �ve-dimensional metri tensor, then, is:(ĝAB) = � g�� 00 "�2 � ; (47)where we have introdued the fator " in order to allow a timelike, as well as spaelike signature forthe �fth dimension (we require only that "2 = 1).Timelike extra dimensions are rarely onsidered in ompati�ed Kaluza-Klein theory, for severalreasons [13℄: (1) they lead to the wrong sign for the Maxwell ation in eq. (9) relative to the22



Einstein one; and (2) they lead to the wrong sign for the mass mn of the harged modes in eq.(24); ie., to the predition of tahyons. The relevane of these two arguments to nonompati�edtheory may be debated. A third ommon objetion (3) is that additional temporal [13℄ or timelike[7℄, [86℄ dimensions would lead to losed timelike urves and hene allow ausality violation. Oneshould be areful here to disriminate between temporal dimensions, whih atually have physialunits of time; and timelike ones, whih merely have timelike signature. If the physial nature of the�fth oordinate were atually temporal, one ould ertainly imagine problems with ausality. Onean, however, transpose units with the proper ombination of fundamental onstants; hanging atemporal one, for instane, into a spatial one with . With regard to timelike extra dimensions, thesituation is also less lear than is sometimes laimed. It has even been argued [219℄ that physismight be quite ompatible with losed timelike urves. All in all, it is probably prudent to keep anopen mind toward the signature of a physial �fth dimension.6.2 The Field EquationsOne now follows the same approah as Kaluza, using the same de�nitions (4) of the �ve-dimensionalChristo�el symbols and Rii tensor. Now, however, one keeps derivatives with respet to the �fthoordinate x4 rather than assuming that they vanish. The resultant expressions for the ��-, �4- and44-parts of the �ve-dimensional Rii tensor R̂AB are [20℄:R̂�� = R�� � r�(���)� + "2�2��4��4g��� � �4g��+gÆ�4g��4g�Æ � gÆ�4gÆ�4g��2 � ;R̂�4 = g44g�4 (�4g���g44 � �g44�4g��) + ��g��4g�2+g��4(��g�)2 � ��g��4g�2 � g��4(��g�)2+g�gÆ��4g���gÆ�4 + �4g���g�4 ;R̂44 = �"���� �4g���4g��2 � g���4(�4g��)2+�4�g���4g��2� � g��gÆ�4g��4g�Æ4 ; (48)where \�" is de�ned as usual (in four dimensions) by �� � g��r�(���).We assume that there is no \higher-dimensional matter," so the Einstein equations take the form(2), R̂AB = 0. The �rst of eqs. (48) then produes the following expression for the four-dimensionalRii tensor: R�� = r�(���)� � "2�2��4��4g��� � �4(�4g��)+gÆ�4g��4g�Æ � gÆ�4gÆ�4g��2 � : (49)The seond an be written in the form of a onservation law:23



r�P �� = 0 ; (50)where we have de�ned a new four-tensor by:P �� � 12pĝ44 (g��4g� � Æ���4g�) : (51)And the third of eqs. (48) takes the form of a salar wave equation for �:"��� = ��4g���4g��4 � g���4(�4g��)2 + �4�g���4g��2� : (52)Eqs. (49) - (52) form the basis of �ve-dimensional nonompati�ed Kaluza-Klein theory. It onlyremains to interpret their meaning in four dimensions, and then to apply them to any given physialproblem by hoosing the appropriate metri ĝAB. The rest of x6 is taken up with interpretation;appliations to osmology and astrophysis are the subjets of x7 and x8. We onentrate in thisreport on the �ve-dimensional ase. The extension to arbitrary dimensions has yet to be investigatedin detail, although some aspets of this have reently been disussed by Rippl, Romero & Tavakol[24℄. (These authors also onsider nonompati�ed lower-dimensional gravity, whih might be moreeasily quantized than Einstein's theory).6.3 Matter from GeometryThe best-understood of eqs. (49) - (52) is the �rst. It allows us to interpret four-dimensional matteras a manifestation of �ve-dimensional geometry [20℄. One simply requires that the usual Einsteinequations (with matter) hold in four dimensions:8�GT�� = R�� � 12Rg�� ; (53)where T�� is the matter energy-momentum tensor. Contrating eq. (49) with the metri g�� gives(with the help of eq. (52)) the following expression for the four-dimensional Rii salar:R = "4�2h�4g���4g�� + �g���4g���2i : (54)Inserting this result, along with eq. (49), into eq. (53), one �nds that:8�GT�� = r�(���)� � "2�2��4��4g��� � �4(�4g��) + gÆ�4g��4g�Æ�gÆ�4gÆ�4g��2 + g��4 ��4gÆ�4gÆ + (gÆ�4gÆ)2�� : (55)Provided we use this expression for T��, the four-dimensional Einstein equations G�� = 8�GT��are automatially ontained in the �ve-dimensional vauum ones ĜAB = 0. The matter desribed byT�� is a manifestation of pure geometry in the higher-dimensional world. This has been termed the\indued-matter interpretation" of Kaluza-Klein theory, and eq. (55) is said to de�ne the energy-momentum tensor of indued matter. 24



This tensor satis�es the appropriate requirements: it is symmetri (the �rst term is a seondderivative, while the others are all expliitly symmetri), and redues to the expeted limit when theylinder ondition is re-applied (ie., when all derivatives �4 with respet to the �fth dimension aredropped). In this ase, the salar wave equation (52) beomes just the Klein-Gordon equation for amassless salar �eld: �� = 0 ; (56)and the ontrated energy momentum tensor of the indued matter vanishes:T = g��T�� = 0 ; (57)whih implies a radiationlike equation of state (p = �=3) for the indued matter, in agreementwith earlier work [220℄ based on the ylinder ondition. The indued matter in this ase onsistsof photons, the gauge bosons of eletromagnetism - exatly the same result obtained by Kaluza.This is the only kind of matter one an obtain in the indued-matter interpretation as long as theylinder ondition is in plae. To extend Kaluza's approah to other kinds of matter, it is neessaryto do one of two things: (1) go to higher dimensions and add an expliit energy-momentum tensor(or other terms) to the higher-dimensional vauum �eld equations (ompati�ed theories in pratieinvolve both these things); or (2) loosen the restrition of ylindriity. In nonompati�ed theory,whih takes the latter ourse, it turns out that matter desribed by T�� - even in �ve dimensions - isalready general enough to desribe many physial systems, inluding in partiular those onnetedwith osmology and the lassial tests of general relativity.The interpretation of eqs. (50) and (52) - the �4- and 44- omponents of the �ve-dimensional�eld equations (R̂AB = 0) - is not as straightforward as that of eq. (49). The relative simpliity ofthe onservation equation (50) suggests that there is a deeper physial signi�ane to the four-tensorP �� , whose fully ovariant form is P�� � (�4g�� � g��gÆ�4gÆ)=(2pĝ44). It may be related to morefamiliar onserved physial quantities, or to the Bianhi identities [20℄.Alternatively, it has been onjetured [177℄ that, as the ��-omponents of the �eld equations linkgeometry with the marosopi properties of matter, so the �4- and 44-omponents might desribetheir mirosopi ones. In partiular, if one makes the tentative identi�ation:P�� = k(mi���� +mgg��) ; (58)where k is a onstant, mi andmg are the (suitably de�ned) inertial and gravitational mass of a partilein the indued-matter uid, and �� � dx�=ds is its four-veloity, then the onservation equation (50)turns out to be the four-dimensional geodesi equation (for one lass of metris at least). This isinteresting, sine equations of motion are usually quite distint from the �eld equations. Similarly,using appropriate de�nitions of partile mass m, one an identify the salar wave equation (52) withthe simplest possible relativisti quantum wave equation, namely the Klein-Gordon equation:�� = m2� : (59)The relevant expression for partile mass turns out to depend expliitly on the omponents ofthe metri, whih means that this variant of nonompati�ed Kaluza-Klein theory is a realizationof Mah's Priniple [251℄, [252℄. These are interesting results, but speulative ones, and we donot disuss them further here. Some other Mahian aspets of nonompati�ed theories have beenexplored in [25℄, [150℄, [178℄, [179℄, [184℄. 25



6.4 The Spherially-Symmetri CaseTo appreiate what the indued-matter energy-momentum tensor (55) means physially, one has tosupply a �ve-dimensional metri ĝAB - preferably one spei� enough to simplify the mathematisbut general enough to be broadly appliable, eg., to both osmologial and one-body problems. Webegin here with the general spherially-symmetri �ve-dimensional line element:dŝ2 = e�dt2 � e�dr2 �R2(d�2 + sin2�d�2) + "e�d 2 ; (60)where " serves the same funtion as before, t, r, � and � have their usual meanings,  is the �fthoordinate, and �, �, R and � are, for now, arbitrary funtions of r, t and  . Denoting derivativeswith respet to t by overdots (_), derivatives with respet to r by primes (0), and derivatives withrespet to  by star supersripts (�), one �nds [21℄ that the energy-momentum tensor (55) of induedmatter has the following nonzero omponents:8�GT 00 = �e��� _� _�4 + _R _�R �+ e���R0�0R � �0�04 + �002 + �024 ��"e������2 + ��24 � ����4 + R���R � R���R + R�2R2 + 2R��R �8�GT 10 = �e��� _�02 + _��04 � � 0 _�4 � _��04 �8�GT 11 = �e��� ��2 + _�24 � _� _�4 + _R _�R �+ e���R0�0R + � 0�04 ��"e���R�2R2 + 2R��R + R���R � R���R + ���2 + ��24 � ����4 �8�GT 22 = �e��� _R _�2R � _� _�4 + _� _�4 + ��2 + _�24 �+ e���R0�02R + �002+�024 � �0�04 + � 0�04 �� "e���R��R + R���2R + R���2R � R���2R+���2 + ��24 + ���2 + ��24 + ����4 � ����4 � ����4 �T 33 = T 22 : (61)If one then assumes that this indued matter takes the form of a perfet uid:T �� = (� + p)u�u� � pÆ�� ; (62)where u� is the four-veloity of the uid elements, then the density � and pressure p an be readilyidenti�ed [21℄ from the relations � = T 00 + T 11 � T 22 and p = �T 22 . Inserting the expressions (61), oneobtains: 8�G� = 32�e���0R0R � e�� _� _RR �+"e�������4 + 3R���2R � R���2R � R���2R � 2R�2R2 � 3R��R � ;26



8�Gp = 12�e���0R0R � e�� _� _RR �+"e�������4 + R���2R + R���2R + R���2R � R��R � : (63)It is immediately apparent that under the restrition of ylindriity (all starred quantities vanish),one an obtain only radiation (p = �=3) from Kaluza's mehanism, as noted already.With the relaxation of this ondition, by ontrast, one obtains a very general equation of state.For example, one an split the density and pressure into four omponents (� = �r + �d + �v + �s andp = pr + pd + pv + ps), where the radiation omponent obeys pr = �r=3, the dust-like omponentobeys pd = 0, the vauum omponent obeys pv = ��v, and the sti� omponent obeys ps = �s. Onethen �nds from eqs. (63) that:�r = 316�G�e���0R0R � e�� _� _RR �+ 3"e��8�G �R���2R � R��R � ;�d = �"e��R�24�GR2 ;�� = �"e��R�16�G ��� + ��� ;�s = "e������32�G : (64)From the �rst of these equations, it follows that in a radiationlike universe whose metri oeÆientsdepend only on time, the �fth dimension must ontrat with time ( _� < 0) if one is to have spatialexpansion ( _R > 0) and positive density (�r > 0). Mehanisms of this sort have been used inompati�ed Kaluza-Klein osmology to pump entropy into the four-dimensional universe, solvingthe horizon and atness problems [221℄; or indeed to explain why the �fth dimension is ompat inthe �rst plae [222℄ (see x7.1). In the nonompati�ed approah, they no longer have to be assumed apriori, but an be seen to be required by the �eld equations. From the seond of the above equations,meanwhile, it follows that a dustlike universe must have a spaelike �fth dimension (" = �1 in ouronvention) in order for its density to be positive (�d > 0). This agrees with the ausality argument(x6.1).6.5 The Isotropi and Homogeneous CaseOne an go farther by making additional assumptions about the metri. Suppose the line element(60) is rewritten in spatially isotropi form:dŝ2 = e�dt2 � e!(dr2 + r2d
2) + "e�d 2 ; (65)where d
2 � d�2+ sin2 �d�2. If one assumes that �, ! and � are separable funtions of the variablest, r and  , one an obtain speialized solutions to the �eld equations (2) whose properties of matter,as spei�ed by the energy-momentum tensor (61), agree very losely with those expeted from four-dimensional theory.Consider �rst the ase of dependene on t only. The metri (65) is then just a �ve-dimensionalgeneralization of a at homogeneous and isotropi Friedmann-Robertson-Walker (FRW) osmology.But in the ontext of nonompati�ed Kaluza-Klein theory, one ought also to allow dependene on the27



extra oordinate  . So the general at �ve-dimensional osmologial metri, assuming separability,should have: e� � T 2(t)X2( ) ; e! � U2(t)Y 2( ) ; e� � V 2(t)Z2( ) : (66)Pone de Leon [145℄ was the �rst to investigate solutions of the vauum Einstein equations (2)with this form. Of his eight solutions, one is of speial interest beause it redues on hypersurfaes = onstant to the spatially at four-dimensional FRW metri. This solution has " = �1 and:T (t) = onstant ; X( ) /  ;U(t) / t1=� ; Y ( ) /  1=(1��) ;V (t) / t ; Z( ) = onstant ; (67)and an be written in the form:dŝ2 =  2dt2 � t2=� 2=(1��)(dx2 + dy2 + dz2)� �2(1� �)2 t2d 2 ; (68)where dx2+dy2+dz2 = dr2+ r2d
2 are the usual retangular oordinates, and � is a free parameterof the theory [168℄. Beause this solution redues on spaetime setions (d = 0) to the familiark = 0 FRW metri: ds2 = dt2 � R2(t)(dx2 + dy2 + dz2) ; (69)it an properly be alled the generalization of the at FRW osmologial metri to �ve dimensions.Assuming that osmologial matter behaves like a perfet uid, one obtains from eqs. (63) thefollowing expressions for density and pressure [167℄:� = 38�G�2 2t2 ; p = �2�3 � 1�� : (70)These are onsistent with a wide variety of equations of state: a radiation-dominated universe, forexample, if � = 2; a dust-�lled one if � = 3=2; or an inationary one if 0 < � < 1. Physial propertiesof osmologies based on the metri (68) have been explored in [167℄-[171℄, and its impliations forthe equations of motion (eg., of galaxies) are known [172℄. Generalizations to k 6= 0 osmologies[173℄, [174℄ and extended (eg., Gauss-Bonnet) theories of gravity [175℄, [176℄ have been made, anda onnetion to Mah's priniple [25℄, [177℄-[179℄ has been identi�ed. These and related issues arereviewed in x7.One other of Pone de Leon's homogeneous and isotropi solutions [145℄ deserves mention. It has:T (t) = onstant ; X( ) /  ;U(t) / exp �p�=3t� ; Y ( ) /  ;V (t) = onstant ; Z( ) = onstant ; (71)and looks like: dŝ2 =  2dt2 �  2e2p�=3t(dx2 + dy2 + dz2)� d 2 : (72)28



This redues on spaetime hypersurfaes ( = onstant) to the de Sitter metri, and � � 3= 2 is aosmologial onstant indued in four-dimensional spaetime by the existene of the �fth oordinate . The equation of state of the \matter" indued in four dimensions is that of the lassial de Sittervauum, p = ��, with � = �=(8�G).Billyard & Wesson [171℄ have onsidered generalizations of this solution:dŝ2 =  2dt2 �  2ei!t(eik1xdx2 + eik2ydy2 + eik3zdz2) + `2d 2 ; (73)where ! is a frequeny, ki a wave vetor, and ` measures the size of the extra dimension. Theindued-matter equation of state is again p = ��, but now with � = �3!2=(32�G 2). The �eldequations (2) turn out to require `2 = 4=!2 so the vauum has positive energy density if the �fthdimension is spaelike. The metri oeÆients of ordinary three-spae exhibit wave-like behaviour,but the assoiated medium is an unperturbed de Sitter vauum - so this solution desribes whatmight be termed \vauum waves" in Kaluza-Klein theory. (They are not gravitational waves of theonventional sort beause three-spae is spherially-symmetri.) One might apply this to the ina-tionary universe senario; imagining, for example, that ! starts out with real values (orrespondingto a vauum-dominated universe with osillating three-spae oeÆients) but later takes on imag-inary values (for whih the universe enters an expanding de Sitter phase of the usual kind). Onthis interpretation, the big bang ours as a (presumably quantum-indued) phase hange - as haspreviously been suggested elsewhere on other grounds [223℄, [224℄.6.6 The Stati CaseThe metri (65) redues to another well-known form when the oeÆients �, ! and � depend only onthe radial oordinate r. This is just a �ve-dimensional generalization of the one-body or Shwarzshildmetri, and has been variously interpreted in the literature as desribing a magneti monopole [225℄,\blak hole" [227℄, and soliton [226℄ (see x8.1 for disussion). Again, however, from a nonompati�edpoint of view there is no a priori reason to suppress dependene on  , so a general stati spherially-symmetri metri, assuming separability, should have:e� � A2(r)D2( ) ; e! � B2(r)E2( ) ; e� � C2(r)F 2( ) : (74)Pone de Leon & Wesson [21℄ searhed for two-parameter solutions of the �ve-dimensional �eldequations (2) with this form and found only four. (Liu & Wesson [193℄, [194℄ have reently obtained athree-parameter generalization of this lass). The most useful is the one whih ontains the ordinaryfour-dimensional Shwarzshild solution as a limiting ase. This is the solution with D, E and Fonstant (= 1 without loss of generality), and is thus idential to the soliton metri just mentioned.The oeÆients A, B and C are:A(r) = �ar � 1ar + 1��k ; B(r) = 1a2r2 (ar + 1)�(k�1)+1(ar � 1)�(k�1)�1 ;C(r) = �ar + 1ar � 1�� ; (75)where a is a onstant related to the mass of the entral body, and � and k are other parameters(in the notation of [227℄). Only one of these is stritly a free parameter, as they are related by aonsisteny relation: �2(k2 � k + 1) = 1 : (76)29



Written out expliitly, the metri is:dŝ2 = A2(r)dt2 �B2(r)(dr2 + r2d
2)� C2(r)d 2 ; (77)where we have assumed a spaelike �fth oordinate (" = �1) in agreement with other work. In thelimits � ! 0, k ! 1, and �k ! 1 (where a � 2=GM� and M� is the mass of the entral body),this metri redues on spaetime setions d = 0 to the familiar Shwarzshild metri (in isotropioordinates): ds2 = �1�GM�=2r1 +GM�=2r�2dt2 � �1 + GM�2r �4(dr2 + r2d
2) : (78)It is therefore properly alled the generalization of the Shwarzshild metri to �ve dimensions.Elsewhere in x6 we will refer to the above values of and k as the \Shwarzshild limit" of the theory.Assuming as usual that the indued matter takes the form of a perfet uid, eqs. (63) give forboth solutions the following density and pressure [180℄:� = �2ka6r42�G(ar � 1)4(ar + 1)4�ar � 1ar + 1�2�(k�1) ; p = �3 : (79)The soliton metri (77) thus desribes a entral mass surrounded by an inhomogeneous loudof radiation-like matter whose density goes as � 1=a2r4 at large values of r. (The Shwarzshildlimit de�ned above is the speial ase where the density and pressure of the loud are zero; in thisase p = 0 = �� whih is the usual vauum solution, with its attendant lassial tests of generalrelativity.) The �2k-term indiates that this ombination of the two (related) parameters � and kmay haraterize the soliton's energy density [181℄. (This is somewhat di�erent from the traditionalinterpretation, in whih these parameters are related to its \salar harge" [215℄, [228℄.) The equationof state (79) obtained in the indued-matter interpretation di�ers from the one found by Davidson& Owen [227℄, who used an approah based on Ka-Moody symmetries [59℄ and onluded thatp = ��=3. Density shows the same r-dependene at large distanes in both approahes, however,and goes to zero in the same Shwarzshild limit. Both solutions are invariant under a ! �a,� ! ��, and require k > 0 for positive density. One an de�ne a pressure three-tensor pab in theindued-matter interpretation, using the ab-omponents of the vauum �eld equations (2), and thisyields a result [180℄ very similar to the series expression obtained by Davidson & Owen. If one thentakes p � paa=3 (as in [227℄), one gets bak exatly the result in eq. (79).In Cartesian spatial oordinates the pressure tensor in general ontains o�-diagonal omponents,whih implies that the matter making up the soliton is a sum of both a material (perfet) uid anda free eletromagneti �eld [180℄. The terms \density" and \pressure" therefore have to be treatedwith aution. Solitoni matter, in fat, is best be desribed as a relativisti uid with anisotropipressure [181℄. Anisotropi spherially-symmetri uids have an energy-momentum tensor given by:T�� = (�+ p?)u�u� + (pk � p?)���� + p?g�� ; (80)where �� is a unit spaelike vetor orthogonal to u�, and pk, p? refer to pressure parallel andperpendiular to the radial diretion. Assuming that the indued matter (61) takes this form ratherthan that of the perfet uid (62); and hoosing u� = (u0; 0; 0; 0), �� = (0; �1; 0; 0), one �nds:pk = �1� �a2r2 � 2�(k � 1)ar + 1�ar ��� ;30



p? = �a2r2 � 2�(k � 1)ar + 12�ar �� ; (81)with � exatly as in eq. (79). These expressions satisfy � = pk + 2p?, on�rming that the uidhas the nature of radiation. The physial properties of solitons based on the metri (77) have beenstudied by several authors [180℄-[183℄, [225℄-[228℄. Their impliations for astrophysis [184℄, [185℄, thelassial tests of general relativity [187℄-[189℄, and the equivalene priniple [190℄ have been explored,and the lass has been extended to time-dependent [191℄, [192℄ and harged solutions [193℄, [194℄.These and related issues are reviewed in x8.We mention for ompleteness the other three stati solutions of the form (74) obtained by Ponede Leon & Wesson [21℄. Two of them have A(r), B(r) and C(r) exatly as in eqs. (75), but haveF ( ) an arbitrary funtion of  , with D�( ) / F ( ) and E( ) = onstant in the �rst ase, andD( ) / E�1( ) and E�( ) / F ( )=E( ) in the seond one. The density and pressure for both thesesolutions is exatly as in eqs. (79) above, exept for an added fator of E2( ) in the denominators.This is physially innouous in the �rst ase (E( ) = onstant) but means in the seond one thatthese attributes of the radiation loud depend on the extra oordinate. The  -dependent omponentsof the �eld equations plae an extra onstraint on these both these solutions, restriting the allowedvalues of the parameters � and k. The �nal solution is more interesting, and an be written in theform: dŝ2 =  2 2 + `dt2 � ( 2 + `)2(ar2 + b) (dr2 + r2d
2) + "d 2 ; (82)where a is related to the mass of the entral objet as before, b = �"=4a, and ` is one otherindependent onstant of the system. Although this solution was found by assuming separability inr and  , it also satis�es the �eld equations (2) when a and b are arbitrary funtions of  . Thisis intriguing, as it hints at a relationship between the mass of the entral objet and the �fthoordinate. Another interesting feature of the metri (82) is its indued-matter equation of state,whih - unlike that of the other soliton solutions found so far - is not radiationlike, but turns outto be the one disussed by Davidson & Owen [227℄: p = ��=3. This is an unusual form of matter,but has been onsidered previously in several other ontexts [229℄-[232℄, largely beause it desribesmatter that does not disturb other objets gravitationally (gravitational or Tolman-Whittaker massis proportional to 3p + �). Thus it might, for instane, be useful in reoniling the extremely highenergy densities expeted for quantum zero-point �elds with the small value observed for Einstein'sosmologial onstant [231℄.6.7 General Covariane in Higher DimensionsWe have reviewed a number of solutions to the spherially-symmetri vauum �eld equations in�ve dimensions. In eah ase the �ve-dimensional geometry manifests itself in four dimensions asindued matter, with an assoiated equation of state. The equation of state, in fat, follows from the�eld equations in the indued-matter interpretation of Kaluza-Klein theory, rather than having tobe supplied separately as in four-dimensional general relativity. In several ases, the physial formof the metri on spaetime hypersurfaes d = onstant, or the equation of state for the induedmatter, is suh as to make the solutions useful for testing the preditions of nonompati�ed theory.The theory is so far not in onit with any experimental data (see x7 and x8).However, it is important to keep in mind that physial quantities suh as the salars � and p, whihare designed to be invariant with respet to four-dimensional oordinate hanges x� ! ~x� annotin general stay that way in nonompati�ed Kaluza-Klein theory, whih is invariant with respet to31



�ve-dimensional ones xA ! ~xA. Any quantities - even those normally thought of as onserved - arevulnerable if they depend on the �fth oordinate x4.What this means in pratie is that density, pressure, and the equation of state in the indued-matter interpretation are to some extent dependent on the oordinates in whih one hooses to expressthem. A searh for the orret solution to a (four-dimensional) physial problem is also a searh forthe appropriate system of (�ve-dimensional) oordinates. This an perhaps best be illustrated witha series of simple x4-dependent oordinate transformations [23℄, beginning with �ve-dimensionalMinkowski spae: dŝ2 = dt2 � dr2 � r2d
2 � d 2 : (83)Spaetime setions of this metri are of ourse four-dimensional Minkowski spaes. If one trans-forms to primed oordinates:t0 = t ; r0 = r �1 + r2 2��1=2 ;  0 =  �1 + r2 2�1=2 ; (84)this metri beomes: dŝ02 = dt02 �  02� dr021� r02 + r02d
2�� d 02 : (85)Spaetime setions ( 0 = onstant) of the new primed metri are stati Einstein osmologies; ie.,four-dimensional FRW metris:ds02 = dt02 �R2(t0)� dr021� kr02 + r02d
2� ; (86)with k = +1 and a onstant sale fator R(t0) =  0 . One an obtain from the Friedmann equationsthe value of Einstein's osmologial onstant �, and (assuming a perfet uid) expressions for thedensity and pressure of matter:� = 1 02 ; �m = 14�G 02 ; �m = 0 : (87)The osmologial onstant represents a vauum energy density �v = �=(8�G) with assoiatedpressure pv = ��v. So altogether one has:� = �m + �v = 38�G 02 ; p = �m + �v � �3 : (88)The e�etive equation of state in the four-dimensional spaetime setions of the primed metri(85) is thus that of non-gravitating matter of the kind disussed in x6.6. (The same result ouldhave been obtained by plugging the metri diretly into eqs. (63) for indued-matter density andpressure.) A seond oordinate transformation to double-primed oordinates:t0 =  00 sinh t00 ; r0 = r00 ;  0 =  00 osh t00 ; (89)puts the metri into the new form: 32



dŝ002 =  002dt002 �  002 osh2 t002� dr0021� r002 + r002d
2�� d 002 : (90)Spaetime setions of this double-primed metri are expanding FRW osmologies, with k = +1and R(t00) =  00 osh t00. The density and pressure of the aompanying perfet uid, as obtainedfrom eqs. (63), are: � = 38�G 002 ; p = �� ; (91)so that the e�etive equation of state is that of a pure vauum.Of the metris (83), (85) and (90), whih one is the best hoie for a desription of the real uni-verse? None, of ourse, sine none of them admits spaetime setions with realisti four-dimensionalproperties. A metri whih is adequate to this task is the osmologial one (68). It an be obtainedfrom Minkowski spae (83) by transforming from t, r,  to ~t, ~r, ~ via:t = �2�1 + ~r2�2�~t1=� ~ 1=(1��) � �2(1� 2�)�~t�1 ~ �=(1��)�(1�2�)=� ;r = ~r~t1=� ~ 1=(1��) ; = �2�1� ~r2�2�~t1=� ~ 1=(1��) + �2(1� 2�)�~t�1 ~ �=(1��)�(1�2�)=� ; (92)and dropping the tildes [25℄. The osmologial metri, as we have seen (x6.5), gives bak good modelsfor the early (radiation) and late (dust) universe on spaetime setions  = onstant if � is hosenappropriately.The point of this exerise is that all four of the metris (68), (83), (85) and (90) are at in �vedimensions, although they would be pereived very di�erently by four-dimensional observers (asevined by their expansion fators and equations of state). The reason for these di�erenes is the  -dependene of the oordinate transformations, and the fat that the theory is ovariant with respetto �ve-, not four-dimensional oordinates. To properly desribe a given four-dimensional problemin nonompati�ed theory, one needs to hoose �ve-dimensional oordinates judiiously. This is nota reetion of some fundamental ambiguity in the theory, but is rather fored on us as long as weinsist on retaining four-dimensional onepts like density and pressure in a �ve-dimensional theory(see also x7.6).6.8 Other Exat SolutionsSimilar remarks apply to astrophysial situations. One has to hoose �ve-dimensional oordinatesappropriate to eah problem, if one wants to ouh the results in terms of familiar four-dimensionalquantities. There is thus a rih �eld here for future inquiry. The one-body metri whih has reeivedmost attention so far is that of the soliton (77), whih ontains the four-dimensional Shwarzshildsolution on spaetime setions. As we saw in x6.6, however, the indued matter assoiated withthis metri is neessarily radiationlike (exept in the Shwarzshild limit), and its density falls o�with distane rather steeply. To desribe bodies with di�erent properties, one must �nd new statispherially-symmetri solutions of the �eld equations. This is possible in Kaluza-Klein theory beauseBirkho�'s theorem (whih guarantees the uniqueness of the Shwarzshild solution in four dimensions)no longer holds in higher dimensions [22℄, [184℄, [214℄, [226℄.33



One suh solution has reently been found by Billyard &Wesson [186℄. It is atually a modi�ationof the osmologial metri (68):dŝ2 = � rr0�2(�+1) 2(�+3)=�dt2 � (3� �2) 2dr2 �  2r2d
2+3(3��2 � 1)r2d 2 ; (93)where r0 is a onstant and � is a parameter related to the properties of matter. On spaetimehypersurfaes d = 0 this metri is very similar to a four-dimensional one originally used to desribeinhomogeneous spheres of matter in stati isothermal equilibrium [233℄. With the aid of eqs. (63),one �nds that the assoiated indued matter has:� = (2� �2)8�G(3� �2) 2r2 ; p = ��2 + 2�+ 2=32� �2 �� : (94)In addition, one an use the standard (Tolman-Whittaker) de�nition [234℄ of the gravitationalmass of a volume of uid to obtain:Mg(r) = (1 + �)Gp3� �2 2+3=�� rr0�2+�r0 : (95)The objet desribed by this metri has positive density for �2 � 2, and positive mass (assuming� 6= 0) for � � �1. So altogether one has a nonzero � between �1 andp2, whih allows for equationsof state (94) anywhere in the range ��=3 � p � �. These are potentially relevant to a wide varietyof astrophysial problems. But the fat that � and p are both proportional to r�2, rather than � r�4as for solitons, indiates that eq. (93) may be espeially useful for modelling phenomena suh asgalaxies, or lusters of them [235℄-[237℄. To go further one needs to rederive the lassial tests ofgeneral relativity for this metri, just as has been done for the soliton one (see x8). Some work hasbeen done in this diretion in [186℄.6.9 The Equations of MotionLike the higher-dimensional �eld equations, the higher-dimensional equations of motion are alsomodi�ed when dependene is allowed on extra oordinates. In this setion, in order to expliitlyinlude eletromagneti e�ets, we no longer restrit our hoie of oordinates to those in whihA� = 0. The metri ĝAB is given by eq. (5), with the addition of the "-fator to allow for timelike,as well as spaelike x4. We then obtain the equations of motion by minimizing the �ve-dimensionalinterval dŝ2 = ĝABdxAdxB. This results in a �ve-dimensional version of the geodesi equation [172℄:d2xAdŝ2 + �̂ABC dxBdŝ dxCdŝ = 0 ; (96)with the �ve-dimensional Christo�el symbol de�ned as in eq. (4). The A = 4 omponent of eq. (96)an be shown [172℄ to take the form:dBdŝ = 12 �ĝCD�x4 dxCdŝ dxDdŝ ; (97)where B is a salar funtion: 34



B � "�2�dx4dŝ + �A�dx�dŝ � : (98)In the ase where ĝAB does not depend on x4, B is a onstant of the motion (sine dB=dŝ = 0),but this is not generally so in nonompati�ed theory. The de�nition of B, together with the form ofthe metri (5), allow us to express the �ve-dimensional interval in terms of the four-dimensional onevia dŝ = (1� "B2=�2)�1=2ds. Using this relation, the A = � omponents of eq. (96) an be shown[172℄ to take the form:d2x�ds2 + ���� dx�ds dx�ds = Bp1� "B2=�2�F �� dx�ds � �A�B dBds � �g���A��x4 dx4ds �+ "B2(1� "B2=�2)�3�r��+ ��B dBds � d�ds�dx�ds ��g���g���x4 dx�ds dx4ds : (99)This is the fully general equation of motion in Kaluza-Klein theory, and for � = 1; 2; 3 shows howa test partile moves in ordinary spae.The left-hand side of eq. (99) is idential to that in Einstein's theory; the terms on the right-handside are deviations from four-dimensional geodesi motion. In the ase of no dependene on the extraoordinate x4, the four terms in dB=ds and �=�x4 all vanish and we orretly reover the same resultobtained previously by those working in ompati�ed Kaluza-Klein theory [238℄-[240℄. The terms inthe �rst set of square brakets depend on a nonvanishing eletromagneti potential A�, and the �rstof these an be reognized as the Lorentz fore if the harge-to-mass ratio of the test partile is:QM = Bp1� "B2=�2 : (100)This relation, however, is only useful in the limit where the metri is independent of x4, and itsextra-dimensional part is at [172℄. In oordinate frames where this is not the ase, one annotreadily identify quantities like mass or harge, whih after all are four-dimensional onepts. Thesame aution applies to the \salar harge-to-mass ratio" given by:Q0M = "B2(1� "B2=�2)�3 ; (101)whih an be identi�ed analogously to the eletromagneti one from the multipliative fator in frontof the seond set of square brakets in eq. (99).The 0-omponent of the geodesi equation (99), meanwhile, an be written [172℄ in a form analo-gous to eq. (97) above: dCds = 12 �ĝCD�x0 dxCds dxDdŝ ; (102)where C is a new salar funtion:C �s g001� �2�1� "B2�2 � + �BA0 : (103)35



Here �2 = �ab�a�b is the square of the test partile's spatial 3-veloity �a = dxa=(pg00[dx0 +(g0b=g00)dxb℄), with ��� � g�0g�0=g00 � g�� a suitable projetor. If the metri ĝAB were independentof time x0 then C would be a onstant of motion. Where this is not the ase, as in osmology, thegeodesi equation (99) ould in priniple be applied to test nonompati�ed theory. We return tothis question in x7.5. The possible physial signi�ane of the quantity C is explored in more detailin [172℄.6.10 Physial Meaning of the Fifth CoordinateWe have noted that the harge of a test partile an be readily identi�ed in the limit as  � x4 =onstant. We have also found that a variety of realisti four-dimensional osmologial models andone-body metris an be identi�ed as onstant- hypersurfaes of at �ve-dimensional Minkowskispae. So far, then, it appears that useful oordinate systems an be spei�ed by the onditionu4 � d =ds = 0. (This is perfetly legitimate from a mathematial point of view as the introdutionof a �fth oordinate into general relativity means an extra degree of freedom that an always beused if one wishes to set a ondition on u4.) However, we have not muh improved on Kaluza'sylinder ondition unless we onfront the question: are there any physial reasons why we shouldexpet d =ds = 0?In answering this one is obliged to interpret  physially. We review here one suh interpretation,whih has been advaned by Wesson and his ollaborators [23℄, [25℄, [135℄, [168℄. Nonompati�edtheory in general (and elsewhere in this report, inluding the next two parts on experimental on-straints) stands or falls quite independently of this additional work. The proposal we onsider is thatthe �fth oordinate  might be related to rest mass. The oordinate frame piked out by u4 = 0 isthen just the one in whih partile rest masses are onstant. There are at least three independentpiees of evidene (besides the empirial fat that rest masses are onserved!) in support of thisonjeture: (1) All of mehanis depends on base units of length, time and mass. So if the formertwo an be treated as oordinates, then maybe the last should also. Dimensionally, x4 = Gm=2allows us to treat the rest mass m of a partile as a length oordinate, in analogy with x0 = t. (2)Metris whih do not depend on x4, like the soliton metri (77), an give rise only to indued matteromposed of photons; while those whih depend on x4, like the osmologial metri (68), give bakequations of state for uids omposed of massive partiles. (3) The metris dŝ2 = dT 2 � d�2 � d	2and dŝ2 =  2dt2�d�2�t2d 2 are related by the oordinate transformations T = t2 2=4+ln[(t= )1=2℄and 	 = t2 2=4 � ln[(t= )1=2℄. The former metri is at, while the latter gives an ation prinipleÆ R dt = 0 for partiles at rest in ordinary spae (d�=ds = 0), viewed on hypersurfaes  = onstant.This ation priniple is formally the same as that of partile physis if  ! m in the loal, low-veloity limit. (The same argument applies to osmologial metris (68).) This view of the origin ofmass is similar to that in some quantum �eld theories [241℄, where rest masses are generated spon-taneously in a onformally invariant theory that inludes a salar dilaton �eld or Nambu-Goldstoneboson in Minkowski spae.Several other, more philosophial reasons [23℄, [25℄ to onsider the STM (\Spae-Time-Matter")hypothesis that  might be related to m an perhaps be mentioned here: (4) A theory in whihmass is plaed on the same footing as spae and time will be naturally sale-invariant, simply byvirtue of being oordinate-invariant (beause partile masses are a neessary part of any system ofunits, or \sales"). The idea that nature might be sale-invariant has been onsidered from time totime by suh eminent thinkers as Dira, Hoyle and others [23℄, [242℄-[250℄. (The STM approah is,however, otherwise quite distint from these theories, not least in the fat that it predits a variationin rest mass m rather than the dimension-transposing onstant G.) (5) There is also a pleasingsymmetry in the elevation of G to the same status as : as the latter puts distanes into temporalunits, so the former is needed to do the same for masses. The atual onversion fators are 1= andG=3 respetively, and this helps explain why any hange in mass with time - a generi feature of36



sale-invariant theories - has been so small as to have esaped detetion so far: the latter fatoris some 43 orders of magnitude smaller than the former, and the former is already tiny enough tohave made speial relativisti e�ets unnotieable until the seond half of this entury. (6) Finally,we note that if x4 is not restrited to be lengthlike (or timelike) in nature, then the extra partof the metri an have either sign without running afoul of losed timelike urves and ausalityproblems (x6.1). We will not onsider the STM theory further in this report, noting however that itsobservational impliations have been studied over the years by Wesson [19℄, [136℄-[139℄ and numerousothers [140℄-[148℄, [149℄-[158℄, [159℄-[163℄.7 Cosmology7.1 Compati�ed Kaluza-Klein CosmologyCosmologial aspets of ompati�ed Kaluza-Klein theory have reeived less attention than thoserelated to partile physis [12℄. Where they have been addressed [7℄, [13℄, muh of the disussionhas foused on the searh for exat solutions of higher-dimensional general relativity (or extendedgravity theories) whih ontain the familiar FRW universes on spaetime-like setions. This was �rstdone in �ve dimensions (with no extra-dimensional matter) by Chodos & Detweiler [222℄ in 1980,and extended to ten- and eleven-dimensional supergravities (with appropriate higher-dimensionalmatter tensors) by Freund [253℄. The key feature of these and subsequent models [254℄-[260℄, [261℄-[267℄ was that extra dimensions ould (and in some ases neessarily would) shrink as the spatialones expanded, thus lending support to the whole notion of ompati�ation. (The possibility thatompat subspaes ould \boune bak" from a ontrating phase was also investigated [268℄, [269℄.)This approah to explaining why the universe appears four-dimensional is sometimes referred to as\dynamial" or \osmologial" dimensional redution. Non-ompati�ed theory an exhibit the samebehaviour, as noted in x6.4 and x8.10.In more than �ve dimensions, ompati�ation requires either expliit matter terms or modi�a-tions to the Einstein equations (x4.4). All kinds of matter have been invoked to indue osmologialompati�ation (usually in addition to that already required for spontaneous ompati�ation; eg.,as in supergravity [253℄, [256℄-[258℄). There are theories with dilaton �elds [258℄, quantized �ve-dimensional salar �elds [259℄, a D-dimensional gas of non-interating salar partiles [260℄, generalhigher-dimensional perfet uids [256℄, [261℄-[264℄, D-dimensional radiation [265℄, �ve-dimensionaldust [266℄, and salar �elds in nonlinear sigma models [267℄. Cosmologial ompati�ation meha-nisms based on modi�ations of Einstein's theory of gravity are just as olorful, employing quadrati[270℄, [271℄, ubi [272℄, and even quarti terms [273℄ in the urvature, both generally and in spe-ial ombinations known variously as Gauss-Bonnet terms [255℄, [265℄, [274℄, [275℄, Lanzos terms[276℄, Lovelok terms [273℄, [277℄, Euler-Poinar�e densities [278℄, and dimensionally ontinued Eulerforms [279℄, [280℄. Even hanges of metri signature [281℄ have been onsidered as instruments ofompati�ation. An exhaustive survey and lassi�ation of generalized higher-dimensional vauumosmologies has reently been arried out by Coley [175℄.An important step in Kaluza-Klein osmology was the demonstration that shrinking extra dimen-sions ould transfer entropy into the four-dimensional universe, providing a new way to solve thehorizon and atness problems [221℄, [282℄, although many (� 40) extra dimensions were required[283℄. Ination itself has also been inorporated diretly in ompati�ed Kaluza-Klein theories [284℄,[285℄, and indeed \Kaluza-Klein ination" has burgeoned into a sub-�eld of its own [286℄. It is diÆultto obtain in some supergravity [256℄ and most superstring [287℄ theories, and again requires in generalthat either additional matter terms [284℄ or higher-derivative orretions [285℄ be added to Einstein'stheory. Examples of the former inlude higher-dimensional dust [288℄, salar �elds with onformaltransformations of the metri [64℄, [289℄ or non-minimal ouplings to the urvature [290℄, generalized37



perfet uids [291℄, [292℄, and others [293℄. Examples of the latter inlude higher-derivative orre-tions to Einstein's equations [294℄, [295℄, Gauss-Bonnet terms [274℄, [281℄, and Euler forms [280℄.Ination has also been obtained with multiple ompat subspaes [296℄ and expliit \haoti ina-ton" �elds [297℄. Other inationary Kaluza-Klein osmologies inlude versions of extended ination[298℄ and STM theory [147℄. An exiting reent development is the use of COBE measurements ofmirowave bakground anisotropy to put experimental limits - surprisingly restritive ones in someases - on inationary Kaluza-Klein models [299℄-[302℄.Cosmologial onstraints on ompati�ed Kaluza-Klein theories apart from those relating to in-ation in the early universe have also reeived attention, beginning with Mariano's observation[303℄ that time-variation in the sale of extra dimensions would have important onsequenes forthe fundamental onstants of four-dimensional physis. Impliations of the same phenomenon forprimordial nuleosynthesis [304℄ and nulear resonane levels in arbon and oxygen atoms [305℄ havealso been disussed. If the extra dimensions are spatial in nature, these arguments imply that thepresent rate of hange in their mean radius is less than about 10�19yr�1. Another interesting idea isto use observations of gravitational waves to onstrain Kaluza-Klein osmologies; this however turnsout to be impratial at the present time [306℄. Other issues in ompati�ed Kaluza-Klein osmologyinlude the possibility of exessive ontributions to the global energy density from massive Fouriermodes [13℄, [307℄ and solitons [13℄, [308℄ (see also x8.4), gravitational e�ets due to massless salaromponents of the ompati�ed higher-dimensional metri [309℄, and the stability of solutions withrespet to lassial perturbations [310℄, haoti behaviour [311℄, and quantum e�ets [212℄, [268℄,[312℄. Inhomogeneous Kaluza-Klein osmologies have been onsidered in [313℄.7.2 The Equation of StateCompati�ed Kaluza-Klein osmology, as desribed above, is haraterized by a profusion of ompet-ing expressions for the energy-momentum tensor T̂AB in higher dimensions, reeting the fat thatthere is no onsensus on how to de�ne \higher-dimensional matter." In nonompati�ed osmology,by ontrast, one avoids this ambiguity with the natural and eonomial assumption that T̂AB � 0;that is, that the universe in higher dimensions is empty.This annot be done in ompati�ed theory beause the ylinder ondition imposes unomfortablerestritions on the resulting equation of state (and other properties of matter) in four dimensions.Consider as a simple example the uniform �ve-dimensional line element (65) with � = 0, ! = ln t,and � = � ln t: dŝ2 = dt2 � td�2 � t�1d 2 ; (104)where d�2 = dx2 + dy2 + dz2 is shorthand for the spatial part of the metri. This would be anaeptable solution in ompati�ed osmology in that its onstant- setions are FRW, none of themetri oeÆients depend on  , and the extra oordinate shrinks with time. Indeed its spatial partgrows in exatly the same way as that of a four-dimensional FRW model with the radiation equationof state, p = �=3. And in fat, in the indued-matter interpretation, this metri literally does desriberadiation. That is, putting eq. (104) into the �ve-dimensional vauum �eld equations ĜAB = 0 givesbak the four-dimensional ones G�� = 8�T��, where T�� is the energy-momentum tensor of a perfetuid with: � = 332�t2 ; p = �3 ; (105)as an be shown expliitly using eqs. (63). (Units are suh that G =  = 1 throughout x7, exeptwhere otherwise noted.) These are the same expressions as those used to desribe the radiation era38



in (at) four-dimensional osmology [168℄. In fat, unless �ve-dimensional matter is put in to beginwith, this metri is inapable of manifesting itself as anything but eletromagneti radiation in fourdimensions (x6.3).In nonompati�ed osmology, by ontrast, one an desribe the universe at any stage of its historywithout higher-dimensional matter (or modi�ations to the higher-dimensional �eld equations). Asdisussed in x6.5, the best metri for this purpose is the \osmologial metri" (68). Consider �rstthe ase � = 2, whih looks like:dŝ2 =  2dt2 � t �2d�2 � 4t2d 2 : (106)This line element again has FRW-like onstant- setions, and gives exatly the same expressionsfor indued density and pressure as eqs. (105) above, provided that the unphysial oordinate label tis replaed by the proper time  t. So it again desribes a radiation-dominated universe, or one �lledwith relativisti partiles suh as neutrinos. This time, however, the metri oeÆients depend on , and the �fth dimension grows with time. Solutions of this type tend to be disarded in partilephysis, where the assumed lengthlike nature of the extra oordinates onstrains them to be verysmall at the present time [55℄. Here we make no a priori assumptions about the physial nature ofextra dimensions. This allows us to obtain more general kinds of osmologial matter [167℄, [168℄.In the ase � = 3=2, for instane, the same metri (68) reads:dŝ2 =  2dt2 � t4=3 �4d�2 � 9t2d 2 ; (107)whih, from eqs. (70), represents matter with indued density and pressure:� = 16�( t)2 ; p = 0 ; (108)and therefore desribes a dust-�lled universe. One an also model ination (in at FRW models) byhoosing 0 < � < 1. Provided one is willing to tolerate a dependene on the extra oordinate, then,and a non-lengthlike interpretation of its physial nature, one an desribe the universe at any stageof its history as a manifestation of pure geometry in �ve dimensions. In every ase, the parameters� and p appear as produts of an underlying geometri theory, and the equation of state manifestsitself as a onsequene of the �eld equations. This is more satisfying than the usual situation in(four-dimensional) osmology, where pressure and density have merely phenomenologial status andthe equation of state must be put into the theory by hand.7.3 Extension to k 6= 0 CosmologiesThe osmologial metri (68), and the others mentioned in x6.5, are all �ve-dimensional generaliza-tions of spatially at four-dimensional FRW spaetimes. One ould also onsider a urved version ofthe homogeneous and isotropi line element (65):dŝ2 = e�dt2 � e!� dr21� kr2 + r2d
2�� e�d 2 : (109)MManus [174℄ has investigated solutions of the vauum Einstein equations (2) with this form.Like Pone de Leon [145℄, he assumed that �, ! and � were separable funtions, as given by eq.(66), with T (t) = Z( ) = onstant. He found four solutions with k 6= 0, eah assoiated with awell-de�ned indued-matter equation of state. We list his �nal results here. In the �rst solution,X( ) and Y ( ) are onstant as well as Z( ), and the line element reads:39



dŝ2 = dt2 � (�kt2 + �t+ �)d�2 � (kt� �=2)2�kt2 + �t+ �d 2 ; (110)where d�2 = [(1� kr2)�1dr2 + r2d
2℄ is new shorthand for the spatial part of the metri and � and� are arbitrary onstants. Sine none of the metri oeÆients depend on  , the equation of state isthat of radiation: � = 3(�2 + 4k�)32�(�kt2 + �t+ �)2 ; p = �3 : (111)This solution was originally disussed by Davidson et al. [254℄. The seond solution reads:dŝ2 = (k + �=2)2k 2 + � + �dt2 � (k 2 + � + �)d�2 � d 2 ; (112)and has: � = 3k8�(k 2 + � + �) ; p = ��3 : (113)This is the equation of state of \nongravitating matter" disussed in x6.6. The same equation ofstate haraterizes the third solution:dŝ2 = dt2 � 14t2(e � ke� )2d�2 � t2d 2 ; (114)whih has: � = 38�t2 1(tanh )2k : (115)Finally, MManus' fourth solution is given by:dŝ2 =  2dt2 � 14 2(et + ke�t)2d�2 � d 2 ; (116)with: � = 38� 2 ; p = �� : (117)This is the equation of state of a vauum.Liu & Wesson [173℄ have extended the searh to non-separable k 6= 0 solutions (109). Instead ofeq. (66), they assume metri oeÆients of the form:e� � L2(t� � ) ; e! � M2(t� � ) ; e� � N2(t� � ) ; (118)where L, M and N are wavelike funtions of the argument (t � � ), with � ating as a \wavenumber." Their solutions turn out to be determined by two relations:
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_L2 + kM2 = �2M2��2M2 �L2� ;N2 = �2M2 � k�2 + �L2 ; (119)where L (orM) must be supplied, and � and � are integration onstants. With L,M and N spei�edin this way, the indued-matter energy-momentum tensor an be alulated, and the density andpressure of the osmologial indued matter found. If one supposes, for example, that � = 0 andM = L(3+1)=2, with  a new onstant, then one obtains a perfet uid with:� = 3�2�28�L3+3 ; p = � : (120)In this ase the metri (109) reads:dŝ2 = 1L1+3 dt2 � L2�2 � � �2L1+3 � k�2�d 2 ; (121)where L(t� � ) plays the role of the osmologial sale fator, obeying the �eld equation:_L2 + kL1+3 = �2�2L2+6 : (122)This solution an be used to desribe, for example, the matter-dominated era ( = 0) or theradiation-dominated one ( = 1=3). The properties of this model are disussed in more detail in[173℄. The fat that the sale fator depends on  as well as t is partiularly interesting, and impliesthat observers with di�erent values of  would disagree on the time elapsed sine the big bang;that is, on the age of the universe. Rather than being a single event, in fat, the big bang in thispiture resembles a sort of shok wave propagating along the �fth dimension. This e�et ould inpriniple allow one to onstrain the theory using observational data on the age spread of objets suhas globular lusters [315℄-[317℄. This has yet to be investigated in detail.7.4 Newton's Law, the Continuity Equation, and Horizon SizeBesides the equation of state, there are two other important laws relating � and p in osmology; andit is natural to ask whether or not they are automatially satis�ed by the indued-matter uid. Theseare the ontinuity (or mass onservation) equation, or equivalently the �rst law of thermodynamisdE + pdV = 0 (where E is energy and V is the three-dimensional volume); and the equation ofmotion (or geodesi equation). The former an be written:��T (�R3) + p ��T (R3) = 0 : (123)The latter is in general quite ompliated (see x6.9), and we defer disussion of the nonomovingase to the next setion. For matter whih is omoving with a uniform uid, however, only the radialdiretion is of interest and the equation of motion is just Newton's law:�2R�T 2 = �MR2 ; M � 43�R3(� + 3p) ; (124)41



where we have used gravitational, rather than inertial mass, as pressure an be signi�ant in osmo-logial problems [314℄. In these equations one must be areful to use proper time T = R e�=2dt anddistane R = R e!=2dr rather than the \raw oordinates" t and r (where r2 = x2+y2+z2 is omovingradial distane). For the osmologial metri (68) one has just T =  t and R = t1=� 1=(1��)r, andit is straightforward to show, using eqs. (70) for � and p, that the onservation equation (123) andequation of motion (124) are both satis�ed [167℄. In fat, the same thing is true for any spatially-atperfet-uid osmology indued in this way by �ve-dimensional geometry [168℄. As far as Newton'slaw and the ontinuity equation are onerned, then, nonompati�ed Kaluza-Klein osmology isindistinguishable from standard osmology. To the extent that these laws depend on the �eld equa-tions, this is not surprising, sine the �ve-dimensional �eld equations Ĝ�� = 0 ontain exatly thesame information as the usual four-dimensional ones G�� = 8�T��.There are, however, e�ets whih depend on the metri but not the �eld equations, and thenonompati�ed versions of these will in general show departures from standard osmology. The sizeof the partile horizon, for example, an be omputed diretly from the line element (assuming a nullgeodesi, dŝ2 = 0). For the above \dust-like" metri (107), it reads:d = t2=30 Z t00 � 20 � 9t2�d dt �2�1=2 dtt2=3 : (125)This is just the usual (four-dimensional) expression, plus a term in (d =dt). (This term neessarilyats to redue the size of the partile horizon beause the extra dimension of the osmologial metri(68) is spaelike.) Similar results are found for the \radiation" metris (106) and (104) above [168℄.The value of the derivative (d =dt) an be evaluated with the help of the full geodesi equation, towhih we turn next.7.5 The Equation of MotionThe general equation of motion, or geodesi equation (99), is also a metri-based relation and willontain nonstandard terms if the �fth dimension is real. Sine the osmologial uid is neutral, wedisregard eletromagneti terms. The spatial omponents (� = i, with i = 1; 2; 3) of eq. (99) thenread: d2xids2 + �i�� dx�ds dx�ds = "B2(1� "B2=�2)�3�ri�+ ��B dBds � d�ds�dxids ��gi��g���x4 dx�ds dx4dx ; (126)where B is as given in eq. (98). We then de�ne a �ve-veloity �̂A � dxA=dŝ, whih is related tothe usual four-veloity �� � dx�=ds by �� = (dŝ=ds)�̂�. Using the osmologial metri (68), onean show that, for objets whih are omoving with the osmologial uid (�̂i = 0), all terms onthe right-hand side of eq. (126) vanish [172℄. Comoving objets, in other words, satisfy the spatialomponents of the �ve-dimensional geodesi equation in exatly the same way as in the standardfour-dimensional theory. This ehoes the result obtained above for Newton's law.For nonomoving objets, however, the right-hand side of eq. (126) will in general ontain nonzeroterms involving the spatial veloities, the extra part of the metri, and derivatives of the metrioeÆients with respet to the extra oordinate. From the viewpoint of four-dimensional generalrelativity suh terms would appear as violations of the weak equivalene priniple or manifestationsof a \�fth fore" [188℄, [214℄, [226℄. To put this in pratial terms, eq. (126) tells us that galaxies with42



large peuliar veloities will not neessarily travel along four-dimensional geodesis. Observationsof the peuliar motions of galaxies (and groups and lusters of them) are now beoming available[318℄-[323℄, and in priniple these an be used to disriminate between nonompati�ed Kaluza-Kleintheory and ordinary general relativity [172℄, although this has yet to be investigated in detail. Similaronsiderations will apply to the dynamis of harged test partiles suh as osmi rays, for whih theeletromagneti terms in eq. (99) would need to be inluded.We turn next to the 0- and 4-omponents of the geodesi equation (99). With omoving spatialoordinates (�̂i = 0) one �nds, using the metri (68):d�̂0dŝ + 2 �̂0�̂4 + �2(1� �)2 t 2 �̂4�̂4 = 0 ;d�̂4dŝ + (1� �)2�2  t2 �̂0�̂0 + 2t �̂0�̂4 = 0 : (127)A solution of these must be ompatible with the metri itself, whih imposes the ondition: 2�̂0�̂0 � �2(1� �)2 t2�̂4�̂4 = 1 : (128)From eqs. (127) and (128) the 0- and 4-omponents of the �ve-veloity are found [170℄ to be:�̂0 = � �p2�� 1 1 ; �̂4 = � (1� �)2�p2�� 1 1t : (129)The ratio of these gives us the rate of hange with time of the extra oordinate (d =dt = �̂4=�̂0),and this is easily integrated to yield:  (t) = � t0t �A ; (130)where t0 is an integration onstant and A � (1� �)2=�2. For � = 2 (the radiation-dominated era),A = 0:25; while for � = 3=2 (the matter-dominated era), A � 0:11. The relative rate of hange ofthe extra oordinate is: d =dt = �At ; (131)and this is omfortably small in either ase at late times. (This is also true in the STM interpretation,where  is related to rest mass; we return to this in the next setion.) The small size of d =dt meansthat the horizon sizes disussed in the last setion will be lose to those in standard osmology. Thedisrepanies are, however, neessarily nonzero if the spatial oordinates are hosen to be omoving.7.6 Cosmologial Impliations of General CovarianeIn the previous setion we worked entirely in oordinates de�ned by the osmologial metri (68).We are of ourse free to transform to oordinates in whih the spatial omponents of the �ve-veloityare not omoving. For example, we an swith from t, r,  to t0, r0 and  0, where:t0 = t ; r0 = t1=�r ;  0 = At�A : (132)43



In terms of these new oordinates, the density and pressure of the osmologial uid are no longergiven by eqs. (70) but by: � = 38��2t02 ; p = �2�3 � 1�� : (133)These are idential to the expressions in standard early (� = 2) and late (� = 3=2) osmology.Also, sine the metri transforms as a tensor, ĝ0AB = (�x0A=�xC)(�x0B=�xD)ĝCD, we have the resultthat ĝ000 = (2� � 1)=�2 = onstant, whih implies that in the new oordinates (132) there is auniversal or osmi time. Similarly, using the vetor transformation law �̂0A = (�x0A=�xB)�̂B, we�nd that the new omponents of the �ve-veloity are:�̂00 = �p2�� 1� ; �̂01 = � 1p2�� 1 r0t0 ; �̂02 = �̂03 = �̂04 = 0 : (134)The 0-omponent of the test partile veloity (whih in four-dimensional theory is related to itsenergy) is onstant. The �rst omponent is proportional to r0, whih represents a version of Hubble'slaw. And the fourth omponent vanishes. Taken together, the above observations tell us that thenew oordinates de�ned by eq. (132) - the ones in whih �̂4 = d =dŝ = 0 - are just the ones whihgive bak standard osmology. In a fully ovariant �ve-dimensional theory, there an be no a priorireason to prefer oordinates in whih �̂4 = 0 over those in whih �̂4 6= 0. It is a matter for experimentto deide. As emphasized in x6.7, the hoie between the oordinates de�ned by the metri (68) andthose de�ned by (132) is not arbitrary - not as long as the laws of physis are written in terms offour-dimensional onepts like density, pressure, and omoving four-veloity [23℄, [170℄. To deidewhether or not the oordinates of the last setion are appropriate to desribe the \real world," onemust look for the e�ets assoiated with them, like the nongeodesi motion of galaxies with largepeuliar veloities.Another promising possibility arises if one an interpret the �fth dimension physially, sine eq.(131) shows expliitly how it will hange with time. In partiular, in the ontext of STM theory,where  is related to partile rest mass, this equation implies a slow variation in rest mass with time:_mm = �At : (135)Putting A � 0:11 for the matter-dominated era and t � 15 � 109 yr for the present epoh, weobtain a value of _m=m = �7� 10�12yr�1. This is marginally onsistent with ranging data from theViking spae probe to Mars, where errors are reported as �4 � 10�12yr�1, and �10 � 10�12yr�1;and quite onsistent with timing data for the binary pulsar 1913+16, where errors are reported as�11 � 10�12yr�1 [170℄, [197℄. If the STM hypothesis is valid, these data tell us that observation islose to settling the question of whether osmology is using oordinates with �̂4 = 0 or ones with�̂4 6= 0.It may seem unusual that physial e�ets an depend on the referene frame in whih one observesthem. In fully ovariant Kaluza-Klein theory this is a neessary onsequene of trying to measure ahigher-dimensional universe with four-dimensional tools. Perhaps the most graphi example of thisis the big bang itself. As demonstrated in x6.7, the osmologial metri (68) is �ve-dimensionallyat. The universe may therefore be far simpler than previously suspeted, in that it may have zerourvature. What then of the big bang singularity, the Hubble expansion, the mirowave bakground,and primordial nuleosynthesis? In nonompati�ed Kaluza-Klein osmology, these phenomena,whih are all de�ned in four-dimensional terms, are in a sense reognized as geometrial illusions -artifats of a hoie of oordinates in the higher-dimensional world [169℄. Something like this ourseven in four-dimensional general relativity when one works with omoving spatial oordinates, in44



whih galaxies remain forever apart and there is no initial singularity [170℄. Relativity is founded onthe idea that there should be no preferred oordinate systems; yet in spatially omoving frames thereis no big bang. This paradox has no resolution within Einstein's theory, whih must onsequentlybe seen as inomplete. In pratie, one usually regards the omoving oordinates as useful but \notreal." Nonompati�ed Kaluza-Klein theory gives us a new way to think about these issues in termsof general ovariane in higher dimensions.8 Astrophysis8.1 Kaluza-Klein SolitonsTo model astrophysial phenomena like the Sun or other stars in Kaluza-Klein theory, one mustextend the spherially-symmetri Shwarzshild solution of general relativity to higher dimensions.Birkho�'s theorem guarantees that the four-dimensional Shwarzshild metri is both stati andunique to within its single free parameter (the mass of the entral objet). This theorem, however,does not hold in higher dimensions, where solutions that are spherially-symmetri (in three or morespatial dimensions) depend in general on a number of parameters (suh as eletri and salar harge)besides mass, and an in some ases be time-dependent as well. Unlike four-dimensional stationarysolutions, some an also be nonsingular [226℄, [324℄, [325℄. Suh loalized solutions of �nite energyan legitimately be alled \solitons" in the same broad sense used elsewhere in physis [326℄. In fat,some workers [180℄, [182℄, [185℄, [191℄, [192℄ have found it onvenient to apply this term to the entirelass of higher-dimensional generalizations of the Shwarzshild metri with �nite energy (inludingthose whih, tehnially speaking, do ontain geometrial singularities). We follow this onventionhere.Kaluza-Klein solitons (in this general sense) were noted as early as 1951 by Hekmann, Jordan &Frike [327℄, who found several solutions of the �ve-dimensional vauum Einstein equations that werestationary and spherially-symmetri in three-spae. K�uhnel & Shmutzer [328℄ arried the problemfurther in 1961, studying for the �rst time the motion of test partiles in the �eld of the entralmass. (Tangherlini [329℄ used the alleged instability of suh \generalized Keplerian orbits" to arguethat there were only three spatial dimensions.) This ruial aspet of Kaluza-Klein theory has beenre-examined over the years by several other authors [226℄, [239℄, [240℄, [330℄, and provides one of themost promising ways to onstrain it observationally. We will return to it below.The �rst systemati studies of stationary Kaluza-Klein solutions with spherial symmetry ap-peared in 1982 with the work of Chodos & Detweiler [228℄ and Dobiash & Maison [331℄. The formerauthors obtained a lass of �ve-dimensional solutions haraterized by three parameters (mass pluseletri and salar harge) and emphasized the important point that solitons are generi to Kaluza-Klein theory in the same way that blak holes are to ordinary general relativity. This is what makesthem so important in onfronting the theory with experiment. The latter authors worked in Ddimensions (although the internal spae was restrited to be at) and their solutions aordinglypossess four or more parameters. Various aspets of Chodos-Detweiler and Dobiash-Maison solitonshave been studied in [215℄, [332℄.The physial properties of �ve-dimensional solitons with zero eletri harge were �rst desribedin detail by Sorkin [225℄, Gross & Perry [226℄, and Davidson & Owen [227℄, whose solutions (givenby eq. (77) in the notation of [227℄) are haraterized by two parameters. Although these latterauthors (along with many others) desribe their solutions as \blak holes," it is important to notethat in some ases the objets being onsidered are naked singularities [332℄, or have singular eventhorizons [215℄, [333℄. The term \monopole" is also potentially misleading sine more ompliatedsolitons an, for example, take the form of dipoles [226℄. For these reasons we prefer to stay with the45



broader term \solitons" in this report.The Chodos-Detweiler metri was generalized by Gibbons & Wiltshire [334℄ to inlude extranondiagonal terms, introduing a fourth parameter (assoiated with magneti harge). These authorsalso onsidered the thermodynamis of Kaluza-Klein solitons for the �rst time. Myers & Perry [335℄then extended the disussion to D-dimensional solitons with spherial symmetry in (D � 1), ratherthan three spatial dimensions, whih allowed them to obtain Kaluza-Klein versions of the Reissner-N�ordstrom and Kerr metris, as well as the Shwarzshild one. The thermodynamial propertiesof these objets, espeially in six and ten dimensions, were examined by Aetta & Gleiser [336℄.Myers [337℄ onsidered solitons whih were not asymptotially Minkowskian. And Yoshimura [166℄took the bold step of allowing dependene of his solutions (albeit only the (D� 4)-dimensional part)on extra dimensions. Others have studied the stability of soliton solutions with respet to lassialperturbations [338℄-[340℄ and quantum e�ets [341℄.All this work was done in a higher-dimensional vauum; that is, with no expliit higher-dimensionalmatter. But most ompati�ed Kaluza-Klein theories, as we have seen, operate in urved higher-dimensional spaes and require suh matter (or other modi�ations of the Einstein equations) toensure proper ompati�ation, among other things. This is just as true for soliton solutions asosmologial ones. Non-Abelian solitons have aordingly been onstruted by many authors using,for example, the Freund-Rubin �elds of D = 11 supergravity [342℄, suitably de�ned six-dimensional[343℄ or seven-dimensional matter �elds [344℄, and various D-dimensional salar �elds [345℄-[350℄.Others have preferred to stay in a higher-dimensional vauum, opting for higher-derivative orretionsto the Einstein equations, inluding (quadrati) Gauss-Bonnet [351℄ and ubi [352℄ urvature terms;or for modi�ations of the Kaluza-Klein mehanism suh as \loal ompati�ation" [353℄.8.2 Are Solitons Blak Holes?The rest of this report is onerned with solitons of the �ve-dimensional Gross-Perry-Davidson-Owen-Sorkin (GPDOS) type [225℄-[227℄, with the line element (77) in the notation of Davidson& Owen. Other spherially-symmetri stati solutions, like the lass found by Billyard & Wesson[186℄, and those with more than two independent parameters [193℄, [194℄, are subjets for futureresearh. Insofar as the metri oeÆients of eq. (77) do not depend on the �fth oordinate, thedistintion between ompati�ed and nonompati�ed approahes is not an issue here. It would,however, beome ruial in higher-dimensional generalizations of what follows. We will interpretthe four-dimensional properties of Kaluza-Klein solitons as indued by the geometry of empty �ve-dimensional spae [20℄ in the manner of x6.3. When D > 5 this requires either a nonompati�edapproah, or modi�ations to the �eld equations, as desribed at the end of the last setion.The �rst question to address is whether GPDOS solitons in the indued-matter interpretation anrightly be onsidered blak holes. The two lasses of objet are alike in one important respet: theyontain a urvature singularity at the enter of ordinary three-spae. However: (1) solitons do nothave an event horizon (not as understood in ordinary general relativity, at any rate); and (2) theyhave an extended matter distribution, rather than having all their mass ompressed into the entralsingularity. In this setion we try to larify these properties, whih make the term \blak hole" aninappropriate one in the ontext of indued-matter Kaluza-Klein theory.To begin with, it is apparent from the spatial omponents of the metri (77) that the enter ofthe 3-geometry is at r = 1=a and not r = 0. The surfae area of 2-shells varies as (ar � 1)1��(k�1),and this shrinks to zero at r = 1=a, given that k > 0 (as required above for positive density),and that the onsisteny relation (76) holds. The point r = 0 is, in fat, not even part of themanifold, whih ends at r = 1=a. That this spatial enter marks the loation of a bona �de urvaturesingularity, and not merely a oordinate one, may be veri�ed by evaluating the appropriate invariantgeometri salars. The square of the �ve-dimensional Riemann-Christo�el tensor (or Kretshmann46



salar K̂ � R̂ABCDR̂ABCD), for example, reads in isotropi oordinates [182℄:K̂ = 192a10r6(a2r2 � 1)8�ar � 1ar + 1�4�(k�1)h1� 2�(k � 1)(2 + �2k)ar+2(3� �4k2)a2r2 � 2�(k � 1)(2 + �2k)a3r3 + a4r4i ; (136)and this is manifestly divergent at r = 1=a (with k > 0). (In the Shwarzshild limit this expressionsimpli�es to K̂ = 192a10r6(ar+1)�12, whih is formally the same as that in four-dimensional Einsteintheory. This however has little signi�ane from the Kaluza-Klein point of view sine the pointr = �1=a is not in the manifold.) The relevant four-dimensional urvature invariant is the square ofthe Rii tensor, C � R��R��, and this omes out as [182℄:C = 8�2a10r6(a2r2 � 1)8�ar � 1ar + 1�2�(k�1)h3 + 4�(3� 2k)ar + 2(3 + 6�2 + 4�2k2�8�2k)a2r2 + 12�a3r3 + 3a4r4i ; (137)whih is also manifestly divergent at the enter of the soliton, r = 1=a.For blak holes in general relativity, the event horizon is ommonly de�ned in general oordinatesas the surfae where the norm of the timelike Killing vetor vanishes. In our ase the Killing vetoris just (1; 0; 0; 0) so its norm vanishes where g00 does. For the soliton metri (77) this happens atr ! 1=a, given that k > 0 and � > 0 (we will �nd below that physiality requires both theseonditions). For physial solitons, in other words, the event horizon shrinks to a point at the enterof ordinary spae. Kaluza-Klein solitons must therefore be lassi�ed as naked singularities, as notiedpreviously by several authors [142℄, [215℄, [333℄, [348℄. Aording to the osmi ensorship hypothesis,suh objets should not be realized in nature. The relevane of this (essentially four-dimensional)postulate to �ve-dimensional objets may, however, be debated. In any ase we will show below thatif they exist, they ould be detetable by onventional astrophysial tehniques.What of the soliton's mass distribution? Applying the standard de�nition [234℄ and using thesoliton metri (77), one �nds [182℄:Mg(r) = 2�ka �ar � 1ar + 1�� : (138)(G =  = 1 throughout x8 unless otherwise noted.) This is the gravitational (or Tolman-Whittaker) mass of a Kaluza-Klein soliton as a funtion of (isotropi) radius r. Other ommonly-usedde�nitions of mass an be evaluated [182℄ but do not lend themselves readily to physial interpre-tation. For positive mass (as measured at in�nity) one must have �k > 0. Sine positive densityrequires in addition that k > 0, it is apparent that both k and � must be positive for realisti solitons.Eq. (138) therefore implies that the gravitational mass of the soliton goes to zero at the enter -behaviour whih di�ers radially from that exhibited by blak holes. Rather than being onentratedinto a pointlike singularity, the mass of the soliton is distributed in an extended fashion (althoughthe � 1=r4-dependene of density noted above means that this distribution is still a sharply peakedone).The soliton de�ned by the Shwarzshild limit is, however, speial in this regard. If one simplytakes the Shwarzshild values � = 0, �k = 1 and puts them diretly into eq. (138), one �nds thatMg(r) = 2=a = onstant for all r. Replaing the parameter a via M� � 2=a and putting this into47



the metri, eq. (77), one reovers on spaetime setions the four-dimensional Shwarzshild solution(78), with \Shwarzshild mass" M�. Alternatively, however, one might keep � arbitrarily small andallow r ! 1=a. In this ase one �nds that Mg(r) ! 0 irrespetive of �. In other words, thereis an ambiguity in the limit by whih one is supposed to reover the Shwarzshild solution fromthe soliton metri. The problem is reminisent of one investigated by Janis, Newman & Winiour[354℄, [355℄ and others [347℄, [356℄, [357℄, in whih the presene of a salar �eld in four-dimensionalgeneral relativity led to ambiguity in de�ning the enter of the geometry. In their ase perturbationanalysis led to a satisfatory resolution of the problem (in whih the Shwarzshild \horizon" atr = 2M� turned out to be a point). Adopting the same approah, Wesson & Pone de Leon [182℄have onduted a numerial study of eq. (138), and this leads unambiguously to the onlusion thatin the Shwarzshild limit (as de�ned by k ! 1 and � ! 0) the mass does go to zero at r = 1=a.The piture that emerges from this numerial work is of an extended loud of matter whose massdistribution beomes more and more ompressed near its enter as the parameters � and k approahtheir Shwarzshild values. Due to the nature of the geometry, however, the enlosed gravitationalmass at the enter is always zero.8.3 Extension to the Time-Dependent CaseThe results of the last setion make it lear that Kaluza-Klein solitons, although they ontain sin-gularities at their enters, are not blak holes, sine they have neither pointlike mass distributionsnor event horizons of the onventional type. A third ruial di�erene between these two lassesof objets, whih follows from the fat that Birkho�'s theorem does not hold in �ve dimensions, isthat soliton metris an be generalized to inlude time-dependene. This goes somewhat against theidea of a soliton as a stati solution of the �eld equations. However, it is reasonable to suppose thatsolitons, if they exist, must have been formed in some astrophysial or osmologial proess duringwhih they ould not have been entirely stati. So it is of physial, as well as mathematial interestto study the extension to time-dependent solutions.Liu, Wesson & Pone de Leon [192℄ have onsidered the ase in whih the oeÆients �, ! and �of the general spherially-symmetri metri (65) depend not only on the radial oordinate r (as inthe GPDOS solution (77)), but on t as well. The metri oeÆients are still assumed to be separablefuntions, so that eqs. (6.6) are in e�et replaed by:e� � A2(r)T 2(t) ; e! � B2(r)U2(t) ; e� � C2(r)V 2(t) : (139)The �eld equations then produe two sets of di�erential equations, for whih four lasses of solu-tions have been identi�ed. We list these here, with brief omments. All the solutions have T (t) =onstant. The �rst lass has U(t) = onstant as well, along with A(r) = C(r), and looks like:dŝ2 = A2(r)dt2 � B2(r)d�2 � A2(r)V 2(t)d 2 ; (140)where d�2 = dr2+r2d
2 as usual, and V (t) an have either an osillating form V (t) = os(!t+') oran exponentially varying one V (t) = exp(�Ht) (the parameters ' and H are arbitrary onstants).The four-dimensional parts of these solutions are stati, and only the extra-dimensional part varieswith time. In the ase of the deaying exponential solution, the time-dependent soliton tends towarda stati one as t� H�1.The seond lass of solutions has V (t) = U�1(t) and C(r) = A�1=2(r), and an be written in theform: dŝ2 = A2(r)dt2 � U2(t)B2(r)d�2 � U�2(t)A�1(r)d 2 ; (141)48



where U(t) satis�es a di�erential equation exatly analogous to one in standard FRW osmology, andis given by U(t) =p' +Ht� �t2 (with � = �1; 0 playing the role of a urvature onstant). This isthe most interesting of the time-dependent soliton solutions, and has been looked at separately byWesson, Liu & Lim [191℄. The funtions A(r) and B(r) an, for instane, be taken to be the sameas those of the stati soliton, eqs. (75). The parameters � and k obey the onsisteny relation (76)as before, and here take the values 1=p3 and 2 respetively. Choosing in addition ' = 1 and � = 0for onveniene, the metri (141) beomes:dŝ2 = �ar � 1ar + 1�4=p3dt2 � �a2r2 � 1a2r2 �2�ar + 1ar � 1�2=p3(1 +Ht)d�2��ar + 1ar � 1�2=p3(1 +Ht)�1d 2 : (142)In the indued-matter interpretation this geometry manifests itself in four dimensions as matterwith anisotropi pressure. Using the same tehnique as in x6.6 (identifying the pressure three-tensorpji and de�ning p � pii=3), one an nevertheless derive a unique equation of state. This turns out tobe [191℄: � = a6r43�(1 +Ht)(a2r2 � 1)4�ar � 1ar + 1�2=p3 + 3H232�(1 +Ht)2�ar + 1ar � 1�4=p3p = �=3 : (143)The matter omprising this time-dependent soliton satis�es the the relativisti equation of state,as expeted sine the metri oeÆients are all independent of  . What is interesting about thissolution (142) is that it redues to the radiation-dominated osmologial metri (104) in the limitof zero entral mass a ! 1 (ie., M� ! 0). So what began as a metri suitable for astrophysialproblems may have osmologial appliations, perhaps for modelling solitons in the early universe[191℄.The third lass of solutions found in [192℄ has A(r) = onstant and U(t) = V (t) = 1 + Ht, andreads: dŝ2 = dt2 � (1 +Ht)2hB2(r)d�2 + C2(r)d 2i : (144)For these solitons the �fth dimension is expanding along with the three-dimensional spatial part.The fourth lass of solutions, �nally, also has U(t) = 1 + Ht, but uses V (t) = U `(t) and C(r) =[A(r)℄(`+2)=(`�1), where ` is another arbitrary onstant. The assoiated line element looks like:dŝ2 = A2(r)dt2 � (1 +Ht)2B2(r)d�2�(1 +Ht)2`[A(r)℄2(`+2)=(`�1)d 2 : (145)For these solitons the three-dimensional spae expands, but the �fth dimension an either expand,ontrat, or remain stati aordingly as ` > 0, ` < 0, or ` = 0 respetively.8.4 Solitons as Dark Matter CandidatesViewed in four dimensions via the indued-matter mehanism, the soliton resembles a hole in thegeometry surrounded by a spherially-symmetri ball of ultra-relativisti matter whose density falls49



o� at large distanes as 1=r4. If the universe does have more than four dimensions, these objetsshould be quite ommon, being generi to Kaluza-Klein gravity in exatly the same way blak holesare to general relativity [180℄, [228℄. It is therefore natural to ask whether they ould supply the as-yetundeteted dark matter whih aording to many estimates makes up more than 90% of the matter inthe universe. Other dark matter andidates, like massive neutrinos or axions, primordial blak holes,and a �nite-energy vauum, enounter problems with exessive ontributions to the extragalatibakground light (EBL) and the osmi mirowave bakground radiation (CMB), among other things[358℄. In view of this we onsider here the possibility that the so-alled \missing mass" onsists ofsolitons.Adopting the same approah that has led to strong onstraints on some of these other dark matterandidates [358℄, one an begin by attempting to assess the e�ets of solitons on bakground radiation[185℄, assuming that the uid making up the soliton is in fat omposed of photons (although thereare no a priori reasons to rule out, say, ultra-relativisti neutrinos or gravitons). Rather than guessingat their spetral distribution we restrit ourselves to bolometri alulations for the time being. Thesoliton density �s at large distanes omes from eq. (79), and in the same regime eq. (138) givesMg � 2�k=a. Therefore, for solitons of asymptoti mass Ms:�s � M2s8�2kr4 ; (146)where we have restored onventional units. Beause this goes as 1=r4 while volume (in the uniformase) inreases as only r3, loal density will be overwhelmingly due to just one soliton - the nearestone - and we do not need to know about the global distribution of these objets in spae. The averageseparation between solitons of mass Ms in terms of their mean density ��s is r = (Ms=��s)1=3, andwe an use this as the distane to the nearest one. Writing the mean soliton density as a fration
s � ��s=�rit of the ritial density �rit = 1:88� 10�26h2kgm�3 [359℄ (where h is the usual Hubbleparameter in units of 100 km s�1 Mp�1), we then �nd that the e�etive loal density (146) ofsolitoni radiation, expressed as a fration of the CMB density, is:�s�CMB � 5:0� 10�13h8=3k�1
4=3s �MsM��2=3 ; (147)where M� stands for one solar mass and �CMB = 2:5� 10�5h�2�rit is the equivalent mass density ofthe CMB at zero redshift [359℄. The quantity k is a free parameter, subjet only to the onsistenyrelation (76). A partiularly onvenient hoie for illustrative purposes is k = 1 (whih implies � = 1also). This lass of solutions was disovered independently by Chatterjee [142℄ and has the speialproperty that gravitational massMg(r) at large distanes r� 1=a is equal to the Shwarzshild massM�. If we suppose that individual solitons have galati mass (Ms = 5 � 1011M�) and that theyolletively make up all the dark matter required to lose the universe (
s = 0:9), then eq. (147)tells us that distortions in the CMB will be of the order:�s�CMB � 1:0� 10�5 ; (148)where we have used h = 0:7 for the Hubble parameter. This is preisely the upper limit set by COBEand other experiments on anomalous ontributions to the CMB. So we an onlude that solitons, ifthey are to provide a signi�ant part of the missing mass, are probably less massive than galaxies.A similar argument an be made on the basis of tidal e�ets. It is known that onventional darkmatter andidates suh as blak holes an be ruled out if they exeed � 108M� in mass, sine suhobjets would exessively distort the shapes of nearby galaxies. The same thing would apply tosolitons. However, one has to keep in mind that there is no reason for the parameters k and � to50



be equal to one for all solitons. They are not universal onstants like  or G, but an in priniplevary from soliton to soliton. Those with k < 1 will have e�etive gravitational masses below theorresponding Shwarzshild ones, and will onsequently be less strongly onstrained. A soliton withk = 0:1, for example, will have � = 1:05 from eq. (76), and its gravitational mass (138) at large rwill be Mg = 0:105M� - only one-tenth the onventional value. And in the extreme ase �k ! 0, itsgravitational mass will vanish altogether. So while these are promising ways to look for Kaluza-Kleinsolitons, aution must be taken in interpreting the results. Ideally one would like to be able to applyone or more independent tests to a given astrophysial system. We therefore devote the rest of thisreport to outlining the impliations of Kaluza-Klein gravity for the lassial tests of general relativity,and for related phenomena suh as those having to do with the priniple of equivalene.8.5 The Classial TestsIt is onvenient to swith from the notation of Davidson & Owen [227℄ to that of Gross & Perry[226℄, and to onvert from isotropi oordinates to nonisotropi ones (in whih r0 = r(1+GM�=2r)2).The soliton metri (77) then takes the form:dŝ2 = �1� 2M�r0 �1=�dt2 � (1� 2M�=r0)(����1)=�(1� 2M�=r0) dr02��1� 2M�r0 �(����1)=�r02d
2 � �1� 2M�r0 ��=�d 2 : (149)where � and � are related to � and k by � = ��=� and k = �1=�, and where we have replaed theGross-Perry parameter m by M�=2. Eq. (149) learly redues to the familiar Shwarzshild solutionon hypersurfaes  = onstant as � ! 1 and � ! 0. De�ning two new parameters a � 1=� andb � �=�, together with the funtion A(r) � 1� 2M�=r, eq. (149) beomes:dŝ2 = Aadt2 � A�(a+b)dr2 � A(1�a�b)r2d
2 � Abd 2 ; (150)where we have dropped the primes on r for onveniene. The onsisteny relation (76) takes theform: a2 + ab + b2 = 1 : (151)We wish to analyze the motion of photons and massive test partiles in the �eld desribed bythe metri (150). The Lagrangian density L an be obtained from L2 = gik _xi _xk, where the xi aregeneralized oordinates and the overdot denotes di�erentiation with respet to an aÆne parameter(suh as proper time in the ase of massive test partiles) along the partile's geodesi trajetory.For the metri (150) this gives:L2 = Aa _t2 � A�(a+b) _r2 � A1�a�br2( _�2 + sin2 � _�2)� Ab _ 2 : (152)From symmetry we an assume that _� = 0, so � = �=2 without loss of generality. Appliation ofthe Euler-Lagrange equations to the Lagrangian (152) immediately produes three onstants of themotion: l � Aa _t ; h � A(1�a�b)r2 _� ; k � Ab _ : (153)51



The third of these quantities, k, is related to the veloity of the test partile along the �fthdimension. The \Shwarzshild limit" of the theory hereafter refers to the values a = 1, b = 0 andk = 0. With eqs. (152) and (153) we are in a position to desribe the motion of photons and testbodies in the weak-�eld approximation (ie., negleting terms in (M�=r)2 and higher orders). Theproedure is exatly analogous to that in ordinary general relativity [360℄, and sine details havebeen given elsewhere [148℄, [187℄-[190℄ we on�ne ourselves in what follows to summarizing only themain assumptions and onlusions.8.6 Gravitational RedshiftThis test depends only on the oeÆients of the metri (150) and, sine the latter is stati, one anonsider emitters and reeivers of light signals with �xed spatial oordinates. The ratio of frequeniesof the reeived and emitted signals is simply:�r�e = g00(re)g00(rr) ; (154)where re and rr are the positions of the emitter and reeiver respetively. Using the metri (150)and disarding terms of seond and higher orders in M�=r, one �nds [188℄ that:�r � �e�e = aM�� 1rr � 1re� : (155)From this result it is lear that the gravitational redshift in Kaluza-Klein theory is in perfetagreement with that of four-dimensional general relativity, as long as one de�nes the gravitationalmass Mg of the soliton by Mg � aM�.8.7 Light DeetionThe light deetion test is more interesting. Noting that dŝ2 = 0 for photons, and substituting theexpressions (153) into eq. (150), one �nds the following equation of motion:� drd��2 � (A(2�2a�b)l2 � A(2�a�2b)k2) r4h2 + Ar2 = 0 : (156)For weak �elds this an be solved [188℄ to yield a hyperboli orbit r(�) in whih the photonapproahes the entral mass from in�nity at � = 0 and esapes to in�nity along � = � + !. Thetotal deetion angle ! is given by: ! = 4M�r0 + 2M�pr0 ; (157)where p � (2� a� 2b)(k=h)2� (2� 2a� b)(l=h)2 and r0 is the impat parameter (distane of losestapproah to the entral mass). The �rst term in eq. (157) is the familiar Einstein light deetionangle. The seond term represents a orretion due to the presene of the �fth dimension, and is inpriniple measurable. (Note that the apparent linear dependene of this term on r0 is illusory as pinvolves the square of the \angular momentum" onstant h / r0 in its denominator.)The physial meaning of this result an be lari�ed by using the metri (150) and the de�nitions(153) to reast eq. (157) in the form [189℄: 52



! = 4M�r0 �1� �f �m(d =dt)21� n(d =dt)2 �� ; (158)where: f � (1� a� b=2)A�(1�2a�b) ;m � (1� a=2� b)A�(1�3b) ; n � A�(a�b) : (159)The m- and n-terms an be ignored when the veloity d =dt of the test body along the �fth dimen-sion is negligible. This is ertainly true for photons (whose veloity is onstant in four dimensions).In addition one an go to the weak-�eld limit and neglet terms of �rst order in M�=r ompared toone, so that A = 1. In that ase f = 1� (a+ b=2) and eq. (158) beomes:! = 4M�r0 �a+ b2� : (160)This redues to the general relativisti result in the Shwarzshild limit. For other values of a andb, the Kaluza-Klein light-bending angle will depart from Einstein's predition, and it is natural toinquire how big suh a departure ould be. The onsisteny relation (151) implies that (a + b=2) =p1� 3b2=4, so in priniple eq. (160) is ompatible with a range of angles �!GR � ! � !GR,where !GR is the general relativisti value. This would allow for null deetion (for b2 = 4=3) andeven light repulsion (for negative roots). These possibilities are, however, unphysial to the extentthat they imply negative values for the (four-dimensional) mass of the soliton. Inertial mass Mi,for example, an be obtained from the Landau pseudo energy-momentum tensor [190℄, [214℄, [226℄,[361℄, and turns out to be Mi = (a + b=2)M�. Therefore if one requires positivity of inertial mass,then (a + b=2) � 0, whih is inompatible with light repulsion. Similarly, gravitational mass Mg isfound from the asymptoti behaviour of ĝ00 [190℄, [214℄, [226℄, [361℄ to be given by Mg = aM� (seealso x8.6). (As disussed in these referenes, and in x8.11, the fat that Mg 6=Mi for b 6= 0 need notneessarily onstitute a violation of the equivalene priniple in Kaluza-Klein theory.) Combining therequirements that Mg � 0 and Mi � 0 with the onsisteny relation (151), one �nds that 0 � b � 1.Therefore if one requires positivity of both inertial and gravitational mass, then the Kaluza-Kleinlight deetion angle (160) must lie in the range 0:5!GR � ! � !GR, whih rules out null deetionas well as light repulsion.This however still leaves room for signi�ant departures from general relativity. Why have thesenot been observed? Most tests to date have been arried out in the solar system whih, onsidered asa soliton, is very lose to the limiting Shwarzshild ase sine nearly all its mass is onentrated nearthe enter. From this perspetive the fat that long-baseline interferometri measurements of solarlight-bending [197℄ have on�rmed Einstein's predition to within a fator of �10�3 merely tell us -via eq. (160) - that the Sun must have b < 0:05. Larger values of this parameter, and hene largerdeviations from the preditions of general relativity, might be looked for in the halos of large elliptialgalaxies, or in lusters of galaxies, where mass is more evenly distributed. Muh of the dark matter iswidely believed to be in these plaes, and if some or all of it is made up of Kaluza-Klein solitons thenone ould hope to �nd evidene of anomalous deetion angles in observations of gravitational lensingby elliptial galaxies [362℄, galaxy lusters [363℄-[366℄, and perhaps in observations of mirolensingby rih lusters [367℄.Just as in four-dimensional general relativity, one an also solve the equation of motion (156) forirular, as well as hyperboli photon orbits. Putting _r = 0 gives [188℄:(1� 2a� b)r2 + AM� r3 + (b� a)A(1�a�2b) k2r4h2 = 0 : (161)53



For negligible motion along the �fth dimension (k = 0) this leads to:r = (1 + 2a+ b)M� : (162)In the Shwarzshild limit this gives bak the general relativisti result. For other values of a andb, irular photon orbits an our at other radii. However, prospets for distinguishing betweenalternative theories of gravity based on this phenomenon are slim [197℄, so we do not onsider itfurther.8.8 Perihelion AdvaneThe elliptial orbits of massive test bodies in orbit around the entral mass are of greater interest[187℄. Using dŝ2 6= 0 leads to a slightly more ompliated version of the equation of motion (156).This an be solved for the orbit of the test body, whih is nearly periodi. The departure fromperiodiity per orbit, or perihelion shift, is found [188℄ to be:Æ� = 6�M2�h2 �d+ e6� ; (163)where: d � (1 + k2) + (a� 1)(�1 + 2l2 � k2) + b(�1 + l2 � 2k2) ;e � 2(2� a� b)(�1 + a+ b) + 2l2(�2 + 2a+ b)(�1 + 2a + b)+2k2(2� a� 2b)(�1 + a+ 2b) : (164)This gives bak the usual general relativisti result in the Shwarzshild limit. If the orbit is nearlyirular then eq. (163) an be simpli�ed to read:Æ� = 6�M�r �a+ 2b3 � ; (165)where r is the orbit's oordinate radius. As with the light deetion test, solar system experiments(preession of Merury's orbit) imply that the Sun, if modelled as a soliton, must have values of aand b very lose to the Shwarzshild ones. Extrasolar systems, however, might show nonstandardperiastron shifts. Candidate systems ould inlude DI Herulis [368℄ and AS Camelopardalis [369℄,as well as binary pulsars [370℄, x-ray binaries [371℄, and possibly pulsars with planetary ompanions[372℄, [373℄. (Eq. (163) would require modi�ations for systems with signi�ant mass ratios.)8.9 Time DelayA similar proedure gives the proper time taken by a photon on a return trip between any two pointsin the �eld of the entral mass. The de�nitions (153) and equation of motion (156) lead to thefollowing result [188℄:�� = 2�1� 2M�r �a��1 + 12�kl �2��qr2p � r2o +pr2e � r2o�54



�M��1 + 12�kl �2��qr2p � r2orp + pr2e � r2ore �+M��(2a+ b) + 3b2 �kl �2�� ln�rp +qr2p � r2oro �+ ln�re +pr2e � r2oro ��� ; (166)where ro, re and rp are the photon's distane of losest approah to the entral mass and the radiusmeasures to the emitting planet (usually Earth) and reeting planet respetively, and r is theoordinate radius at whih measurement is made (usually the same as re). In the Shwarzshildlimit, eq. (166) gives bak the usual result of four-dimensional general relativity. Experimental datasuh as that from the Viking spaeraft [197℄ tell us that our solar system is lose to this limit.8.10 Geodeti PreessionThe motion of a spinning objet in �ve dimensions is more ompliated, but an be usefully studiedin at least two important speial ases: (1) the ase in whih the 4 omponent of the spin vetor ŜAis zero [188℄; and (2) the ase in whih the 4-omponent of spaetime is at [183℄. We review thesein turn.The objet in both ases is to solve for ŜA as a funtion of proper time ŝ. The requirement ofparallel transport implies: dŜMdŝ + �̂MABŜA�̂B = 0 ; (167)where �̂A � dxA=dŝ is the �ve-veloity. Sine ŜA is spaelike whereas �̂B is timelike, their innerprodut an be made to vanish: ĝABŜA�̂B = 0 : (168)Eqs. (167) and (168), together with the metri, an be solved for the omponents of the spinvetor ŜA if some simplifying assumptions are made.To evaluate ase (1) we use the Gross-Perry soliton metri (150), we restrit ourselves to irularorbits xA(ŝ), (for whih the veloity vetor �̂A an be written �̂A = (t; 0; 0; td�=dt; 0)), and assumethat Ŝ4 = 0. The resulting expressions for the omponents of ŜA are lengthy [188℄ and not partiularlyilluminating. The important thing about them is that the spatial omponents Ŝi show a rotationrelative to the radial diretion, with proper angular speed [188℄:
 = � [r � (1 + a+ b)M�℄r(a�1)=2(r � 2M�)(a+1)=2 �
0 ; (169)where 
0 � d�=dt is given by:
0 = �(1� a� b)a �1� 2M�r �1�2a�br2+ 1aM��1� 2M�r �2�2a�br3�1=2 : (170)55



A spin vetor ŜA whose initial orientation is along the radial diretion will, after one revolutionalong xA(ŝ), undergo a geodeti preession:Æ� = 2��1� pr � (1 + a+ b)M�pr � (1 + 2a+ b)M�pr(r � 2M�) � : (171)Going to the weak-�eld limit and using the onsisteny relation (151), one an redue this expres-sion to: Æ� = 3�M�r �a+ 2b3 � ; (172)whih gives bak the usual general relativisti result in the Shwarzshild limit. In general therewill be deviations from Einstein's theory whih are in priniple measurable. One way to detetthem would be with orbiting gyrosopes like those aboard the Gravity Probe-B (GP-B) satellite[374℄, designed to orbit the earth at an altitude of 650 km. Assuming for the sake of illustrationthe same value of b = 0:05 mentioned in x8.7 as the largest one ompatible with solar light-bendingexperiments, one �nds from eq. (172) that the geodeti preession in Kaluza-Klein theory wouldbe 1.238 milliarseonds per revolution, or an angular rate of 6.674 arse yr�1. This exeeds thegeneral relativisti predition (6.625 arse yr�1) by 49 milliarse yr�1 - a di�erene that wouldeasily be deteted by GP-B. In fat this satellite is expeted to measure angular rates as small as 0.1milliarse yr�1, whih would allow it to probe b-values as small as 10�4.We turn now to ase (2), in whih the spin vetor ŜA is arbitrary but the �fth dimension ofspaetime is at. Instead of the soliton metri (150) we introdue a simpler �ve-dimensional lineelement [183℄ whih is also spherially-symmetri in three-dimensional spae:dŝ2 =  2L2��1� 2M�r � r2L2�dt2��1� 2M�r � r2L2��1dr2 � r2d
2�� d 2 : (173)This redues to the four-dimensional Shwarzshild-de Sitter line element on surfaes  = onstant:ds2 = �1� 2M�r � r2L2�dt2 � �1� 2M�r � r2L2��1dr2 � r2d
2 ; (174)and the onstant L (whih has units of length) gives rise to an e�etive four-dimensional osmologialonstant � = 3=L2 [178℄, [179℄. The four-dimensional universe is haraterized by indued matterwhose density and pressure are found from eqs. (63) to be given by � = 3= 2 and p = ��.Consider �rst of all an objet whih is not spinning. Its orbit xA(ŝ) is found using the metrirelation (173), whih satis�es a onsisteny relation:ĝAB�̂A�̂B = 1 ; (175)together with the geodesi equation (96). The A = 5 omponent of this latter equation turns out[183℄ to be: d2 dŝ2 + 1 �d dŝ�2 + 1 = 0 : (176)56



This has the simple solution  2 =  2m � ŝ2, where  m = onstant. Sine eqs. (173) and (174) arerelated by dŝ2 = ( =L)2ds2 � d 2, one �nds that: =  mosh[(s� sm)=L℄ ; (177)where sm is some �duial value of the four-dimensional proper time at whih  =  m. Physially,the �fth oordinate in this spaetime expands from zero size to a maximum value of  m, and thenontrats bak to zero. We are living in the period s > sm, when  is dereasing (f. x7.1) onosmologial timesales. (The length L is large if the osmologial onstant � is small.)The spatial omponents of the geodesi equation (96) for this �ve-dimensional metri turn out tobe idential with the usual four-dimensional ones [178℄, [183℄. This is somewhat surprising sine thefour-dimensional metri (174) depends on  . It means that the lassial tests of relativity disussedin x8.6 - x8.9 are by themselves insuÆient to distinguish between Einstein's theory and its �ve-dimensional ounterpart. When spin is inluded, however, the two theories lead to very di�erentpreditions. For this we require the full mahinery of eqs. (167) and (168) as well as eqs. (96)and (175). Consider for simpliity a irular orbit as before, and assume that the spin vetor lies inthe plane of the orbit (so Ŝ2 = 0), and that one an arrange mehanially to satisfy the inequalityrŜ3 � Ŝ1. (These onditions are lose to those in the GP-B experiment, or alternatively might beused to model the Sun-Uranus system, sine the spin axis of Uranus lies near its orbital plane.) Inthis ase the four equations noted above allow one to solve for all the omponents of the spin vetor(inluding Ŝ4). Its preession from the radial diretion after one orbit turns out in the weak-�eldlimit (r2=L2 �M�=r� 1) to be [183℄:Æ� = 3�M�r � 2�H4rH1L osh[(s0 � sm)=L℄ ; (178)where s0 is the value of s at the beginning of the orbit, and H1 and H4 are normalized amplitudes ofthe spin vetor along the x1 and x4 axes respetively. The �rst term is the usual geodeti preession offour-dimensional general relativity. The extra term depends on the size H4=H1 of the spin omponentalong the �fth dimension, the mass M� of the entral body, and osmologial fators like the elapsedfour-dimensional proper time. It also involves radius in a manner quite di�erent from that of the�rst term, whih suggests that the two terms ould be separated experimentally. Whether this ispratial or not has yet to be established, but further investigation is warranted insofar as geodetipreession is the only test of relativity whih an in priniple allow us to distinguish between the�ve-dimensional metri (173) and the four-dimensional one (174).8.11 The Equivalene PrinipleMany of the above tests show departures from four-dimensional geodesi motion. These ould beinterpreted as violations of the weak equivalene priniple (WEP) by the urvature of the �fthdimension. However, Gross & Perry [226℄ have argued that they should more appropriately beattributed to a breakdown of Birkho�'s theorem, sine the underlying theory is fully ovariant in �vedimensions and involves only gravitational e�ets. Cho & Park [214℄ have made similar omments,arguing that the extra dimension ats like a �fth fore whih is, however, indistinguishable fromgravity for an unharged partile. The nature of the �fth fore in nonompati�ed theory hasreently been treated in depth by Mashhoon et al. [26℄. Here we onsider only the simple butdramati illustration a�orded by a test body in radial free fall near a soliton. This is the analog ofGalileo's experiments with objets dropped vertially in the Earth's gravitational �eld. And whilethis ase is somewhat impratial in the ontext of modern tests of gravity, we will see that it leadsto several simple and instrutive results. 57



For vertial free-fall, d� = d� = 0, and the equation of motion (156) leads diretly to the followingresult in terms of the onstants (153):_r2 = Abl2 � Aak2 � A(a+b) : (179)For a partile whih begins at rest ( _r = 0) at r = r0, this equation gives:l2 = [A(r0)℄a + [A(r0)℄(a�b)k2 : (180)Combining eqs. (179) and (180), one obtains the \energy ondition" [188℄:_r2 = ��1� 2M�r �b�1� 2M�r0 �(a�b) � �1� 2M�r �a�k2+�1� 2M�r �b�1� 2M�r0 �a � �1� 2M�r �(a+b) : (181)In the Shwarzshild limit this gives bak the familiar four-dimensional formula _r2 = 2M�(1=r �1=r0), whih has the same form as the energy equation (for vertial free-fall) in lassial Newtoniantheory.The partile's oordinate veloity in the r-diretion is given by ur � dr=dt = _rds=dt, and an bealulated from eq. (181) and the metri (150). It turns out (for r0 !1) to be [188℄:ur = � 1p1 + k2�1� 2M�r �a���1� 2M�r �b � �1� 2M�r �a�k2+�1� 2M�r �b�1� �1� 2M�r �a��1=2 : (182)This expliitly depends on veloity along the �fth dimension through k. Test partiles with nonzerovalues for this parameter will deviate from geodesi trajetories (in four dimensions) and appear toviolate the WEP. The a and b parameters also produe disrepanies with four-dimensional theory.For example, the radius where ur begins to derease (as the test partile nears the Shwarzshildsurfae) di�ers from the simple value of r� = 6M� predited in Einstein's theory. In the ase wherek2 � 1 one �nds instead [188℄: r� = 2M��1� �2a+ b3a+ b�1=a��1 : (183)This redues to the general relativisti result in the Shwarzshild limit.The e�ets of the �fth dimension an perhaps be most readily appreiated in the partile's ael-eration, whih omes from di�erentiating eq. (179):�r = �M�r2 [(a+ b)A(a+b�1) � bl2A(b�1) + ak2A(a�1)℄ (184)In the Shwarzshild limit (a = 1; b = 0) this redues to:�r = �(1 + k2)M�r2 ; (185)58



whih gives bak the familiar four-dimensional result when k = 0. In general, though, the partile'shidden veloity in the �fth dimension a�ets its rate of fall towards the entral body in a verysigni�ant way. For ompleteness we note that a partile whih has k = 0 and starts from rest atin�nity (in whih ase eq. (180) implies l2 = 1 + k2) will have:�r = �aM�r2 ; (186)at large distanes (r � 2M�). This on�rms that a partile aelerates in the �eld of the soliton ata rate governed by Mg = aM� (the gravitational mass) and not M�. As mentioned in x8.7, neitherMg nor M� is neessarily the same as the soliton's inertial mass Mi in Kaluza-Klein theory, the twoquantities being related [190℄, [214℄, [226℄, [361℄ by:Mi = �1 + b2a�Mg : (187)These are stritly idential only in the Shwarzshild limit b = 0, and in other ases there will beapparent violations of the WEP. (Note that the fator of two is missing in ref. [226℄.) Experimentally,one an fous on the quantity: � � ���� (Mg=Mi)A � (Mg=Mi)B12 [(Mg=Mi)A + (Mg=Mi)B℄ ���� ; (188)where the subsripts A and B stand for two objets with di�erent ompositions. This is known fromexperiments on the Earth to be less than about 2 � 10�11, and would be measured to as little as10�17 by the proposed Satellite Test of the Equivalene Priniple (STEP) [375℄. If eq. (187) is valid,then one expets two di�erent solitons to have:� � 12����� ba�B � � ba�A���� ; (189)whih vanishes in the Shwarzshild limit b = 0. This relation provides yet another way to probeexperimentally for the possible existene of extra dimensions.9 ConlusionsKaluza uni�ed Einstein's theory of gravity and Maxwell's theory of eletromagnetism by the simpledevie of letting the indies run over �ve values instead of four. Other interations an be inludedby letting the indies take on even larger values, but in our review we have onentrated on theprototype theory viewed as an extension of general relativity. Klein's ontribution was to explain theapparently unobserved nature of the extra dimension by assuming it was rolled up to a small size, andompati�ed Kaluza-Klein theory remains one of three prinipal approahes to the subjet. Anotheris to use the extra dimension as an algebrai aid, as in the projetive approah. A third version ofKaluza-Klein theory, on whih we have spent onsiderable time sine it is the newest, regards the�fth dimension as real but not neessarily a simple length or time. In the spae-time-matter theory,it is responsible for mass.All three versions of Kaluza-Klein theory are viable as judged by experiment and observation. Inpartiular, they annot be ruled out by the lassial tests of relativity or results from astrophysisand osmology. Indeed, it an be diÆult to distinguish between the three main versions of Kaluza-Klein theory at the present time beause their observational onsequenes are often similar. To help59
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