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tWe review higher-dimensional uni�ed theories from the general relativity, rather than the parti
lephysi
s side. Three distin
t approa
hes to the subje
t are identi�ed and 
ontrasted: 
ompa
ti�ed,proje
tive and non
ompa
ti�ed. We dis
uss the 
osmologi
al and astrophysi
al impli
ations of extradimensions, and 
on
lude that none of the three approa
hes 
an be ruled out on observational groundsat the present time.1 Introdu
tionKaluza's [1℄ a
hievement was to show that �ve-dimensional general relativity 
ontains both Einstein'sfour-dimensional theory of gravity and Maxwell's theory of ele
tromagnetism. He however imposeda somewhat arti�
ial restri
tion (the 
ylinder 
ondition) on the 
oordinates, essentially barring the�fth one a priori from making a dire
t appearan
e in the laws of physi
s. Klein's [2℄ 
ontribution wasto make this restri
tion less arti�
ial by suggesting a plausible physi
al basis for it in 
ompa
ti�
ationof the �fth dimension. This idea was enthusiasti
ally re
eived by uni�ed-�eld theorists, and whenthe time 
ame to in
lude the strong and weak for
es by extending Kaluza's me
hanism to higherdimensions, it was assumed that these too would be 
ompa
t. This line of thinking has led througheleven-dimensional supergravity theories in the 1980s to the 
urrent favorite 
ontenders for a possible\theory of everything," ten-dimensional superstrings.We review the �eld of Kaluza-Klein gravity, 
on
entrating on the general relativity, rather thanparti
le physi
s side of the subje
t. (For the latter there are already many ex
ellent books [3℄-[8℄ andreview arti
les [9℄-[14℄ available.) We also aim to re-examine the �eld to some extent, as it seemsto us that the 
art of 
ompa
ti�
ation has in some ways gotten ahead of the horse of uni�
ation.Kaluza uni�ed not only gravity and ele
tromagnetism, but also matter and geometry, for the photonappeared in four dimensions as a manifestation of empty �ve-dimensional spa
etime. Modern Kaluza-Klein theories, by 
ontrast, routinely require the addition of expli
it \higher-dimensional matter"�elds in order to a
hieve su

essful 
ompa
ti�
ation (among other things). Are they ne
essary? Yes,if extra 
oordinates must be real, lengthlike and 
ompa
t. There are, however, higher-dimensionaluni�ed �eld theories whi
h require none of these things: proje
tive theories [15℄-[18℄, in whi
h extra
oordinates are not physi
ally real; and non
ompa
ti�ed theories [19℄-[26℄, in whi
h they are notne
essarily lengthlike or 
ompa
t. These theories re
eive spe
ial attention in our report.We begin in x2 with a histori
al overview of higher-dimensional theories of gravity. In x3 wereview Kaluza's original me
hanism, emphasizing what to us are its three prin
ipal features. Thethree main approa
hes to higher-dimensional uni�
ation sin
e Kaluza - 
ompa
ti�ed, proje
tive and2



non
ompa
ti�ed - are reviewed in x4, x5 and x6 respe
tively. We note that ea
h one modi�es orsa
ri�
es at least one of the key features of Kaluza's theory, and dis
uss the impli
ations. The all-important question of experimental 
onstraints is addressed in x7 and x8, whi
h deal respe
tivelywith 
osmologi
al and astrophysi
al e�e
ts of extra dimensions. None of the three above-mentionedapproa
hes 
an be ruled out on observational grounds at the present time. Con
lusions and prospe
tsfor further work are summarized in x9.2 Histori
al Overview2.1 Higher DimensionsThe world of everyday experien
e is three-dimensional. But why should this be so? The questiongoes ba
k at least to Kepler [27℄, who spe
ulated that the threefold nature of the Holy Trinity mightbe responsible. More re
ent arguments have involved the stability of planetary orbits and atomi
ground states, the use of wave propagation for information transmission, the fundamental 
onstantsof nature, and the anthropi
 prin
iple [28℄, as well as wormhole e�e
ts [29℄, the 
osmologi
al 
onstant[30℄, 
ertain \geometry-free" 
onsiderations [31℄, string theories [32℄, and nu
leation probabilities inquantum 
osmology [33℄. All these lines of reasoning 
onverge on the same 
on
lusion: that, inagreement with 
ommon intuition, spa
e is 
omposed of three ma
ros
opi
 spatial dimensions x1, x2and x3.Nevertheless, the temptation to tinker with the dimensionality of nature has proved irresistibleto physi
ists over the years. The main reason for this is that phenomena whi
h require very dif-ferent explanations in three-dimensional spa
e 
an often be shown to be manifestations of simplertheories in higher-dimensional manifolds. But how 
an this idea be re
on
iled with the observedthree-dimensionality of spa
e? If there are additional 
oordinates, why does physi
s appear to beindependent of them?It is useful to keep in mind that the new 
oordinates need not ne
essarily be lengthlike (in thesense of being measured in meters, say), or even spa
elike (in regard to their metri
 signature). A
on
rete example whi
h violates both of these expe
tations was introdu
ed in 1909 by Minkowski[34℄, who showed that the su

esses of Maxwell's uni�ed ele
tromagneti
 theory and Einstein's spe
ialrelativity 
ould be understood geometri
ally if time, along with spa
e, were 
onsidered part of afour-dimensional spa
etime manifold via x0 = i
t. Many of the abovementioned arguments againstmore than three dimensions were 
ir
umvented by the fa
t that the fourth 
oordinate did not markdistan
e. And the reason that physi
s had appeared three-dimensional for so long was be
ause of thelarge size of the dimension-transposing parameter 
, whi
h meant that the e�e
ts of \mixing" spa
eand time 
oordinates (ie., length 
ontra
tion, time dilation) appeared only at very high speeds.2.2 Kaluza-Klein TheoryInspired by the 
lose ties between Minkowski's four-dimensional spa
etime and Maxwell's uni�
ationof ele
tri
ity and magnetism, Nordstr�om [35℄ in 1914 and (independently) Kaluza [1℄ in 1921 werethe �rst to try unifying gravity with ele
tromagnetism in a theory of �ve dimensions (x0 throughx4). Both men then fa
ed the question: why had no �fth dimension been observed in nature? InMinkowski's time, there had already been experimental phenomena (namely, ele
tromagneti
 ones)whose invarian
e with respe
t to Lorentz transformations 
ould be interpreted as four-dimensional
oordinate invarian
e. No su
h observations pointed to a �fth dimension. Nordstr�om and Kaluzatherefore avoided the question and simply demanded that all derivatives with respe
t to x4 vanish.In other words, physi
s was to take pla
e - for as-yet unknown reasons - on a four-dimensional3



hypersurfa
e in a �ve-dimensional universe (Kaluza's \
ylinder 
ondition").With this assumption, ea
h was su

essful in obtaining the �eld equations of both ele
tromag-netism and gravity from a single �ve-dimensional theory. Nordstr�om, working as he was before generalrelativity, assumed a s
alar gravitational potential; while Kaluza used Einstein's tensor potential.Spe
i�
ally, Kaluza demonstrated that general relativity, when interpreted as a �ve-dimensional the-ory in va
uum (ie., 5GAB = 0, with A, B running over 0, 1, 2, 3, 4), 
ontained four-dimensionalgeneral relativity in the presen
e of an ele
tromagneti
 �eld (ie., 4G�� =4 TEM�� , with �, � runningover 0, 1, 2, 3), together with Maxwell's laws of ele
tromagnetism. (There was also a Klein-Gordonequation for a massless s
alar �eld, but this was not appre
iated - and was in fa
t suppressed - byKaluza at the time.) All subsequent attempts at higher-dimensional uni�
ation spring from thisremarkable result.Various modi�
ations of Kaluza's �ve-dimensional s
heme, in
luding Klein's idea [2℄, [36℄ of 
om-pa
tifying the extra dimension (whi
h we will dis
uss in a moment) were suggested by Einstein,Jordan, Bergmann, and a few others [37℄-[43℄ over the years, but it was not extended to more than�ve dimensions until theories of the strong and weak nu
lear intera
tions were developed. The ob-vious question was whether these new for
es 
ould be uni�ed with gravity and ele
tromagnetism bythe same method.The key to a
hieving this lay in the 
on
ept of gauge invarian
e, whi
h was 
oming to be re
ognizedas underlying all the intera
tions of physi
s. Ele
trodynami
s, for example, 
ould be \derived"by imposing lo
al U(1) gauge-invarian
e on a free-parti
le Lagrangian. From the gauge-invariantpoint of view, Kaluza's feat in extra
ting ele
tromagnetism from �ve-dimensional gravity was nolonger so surprising: it worked, in e�e
t, be
ause U(1) gauge-invarian
e had been \added onto"Einstein's equations in the guise of invarian
e with respe
t to 
oordinate transformations along the�fth dimension. In other words, gauge symmetry had been \explained" as a geometri
 symmetry ofspa
etime. The ele
tromagneti
 �eld then appeared as a ve
tor \gauge �eld" in four dimensions. Itwas natural - though not simple - to extend this insight to groups with more 
ompli
ated symmetry.De Witt [44℄ in 1963 was the �rst to suggest in
orporating the non-Abelian SU(2) gauge groupof Yang and Mills into a Kaluza-Klein theory of (4 + d) dimensions. A minimum of three extradimensions were required. This problem was pi
ked up by others [45℄-[47℄ and solved 
ompletely bythe time of Cho & Freund [48℄, [49℄ in 1975.2.3 Approa
hes to Higher-Dimensional Uni�
ationWe emphasize here three key features of all the models dis
ussed so far:(i) They embody Einstein's vision [50℄-[52℄ of nature as pure geometry. (This idea 
an be tra
ed innonmathemati
al form at least to Cli�ord in 1876 [53℄, and there are hints of it as far ba
k as theIndian Vedas, a

ording to Wheeler and others [54℄.) The ele
tromagneti
 and Yang-Mills �elds, aswell as the gravitational �eld, are 
ompletely 
ontained in the higher-dimensional Einstein tensor(4+d)GAB; that is, in the metri
 and its derivatives. No expli
it energy-momentum tensor (4+d)TAB isneeded.(ii) They are minimal extensions of general relativity in the sense that there is no modi�
ation tothe mathemati
al stru
ture of Einstein's theory. The only 
hange is that tensor indi
es run over 0to (3 + d) instead of 0 to 3.(iii) They are a priori 
ylindri
al. No me
hanism is suggested to explain why physi
s depends on the�rst four 
oordinates, but not on the extra ones.The �rst two of these are agreeable from the point of view of elegan
e and simpli
ity. The third,however, appears 
ontrived to modern eyes. In the e�ort to repair this defe
t, higher-dimensionaluni�ed theory has evolved in three more or less independent dire
tions sin
e the time of Kaluza.4



Ea
h one sa
ri�
es or modi�es one of the features (i) to (iii) above.Firstly, it has been proposed that extra dimensions do not appear in physi
s be
ause they are
ompa
ti�ed and unobservable on experimentally a

essible energy s
ales. This approa
h has beensu

essful in many ways, and is the dominant paradigm in higher-dimensional uni�
ation (re
entreviews in
lude many ex
ellent books [3℄-[8℄ and arti
les [9℄-[14℄). If one wants to unify more thanjust gravity and ele
tromagnetism in this way, however, it seems that one has in pra
ti
e to abandonEinstein's goal of geometrizing physi
s, at least in the sense of (i) above.A se
ond way to sweep the extra dimensions out of sight is to regard them as mathemati
al artifa
tsof a more 
ompli
ated underlying theory, sa
ri�
ing (ii) above. This 
an be done, for example, ifone repla
es the 
lassi
al (aÆne) geometry underlying Einstein's general relativity with proje
tivegeometry (see for reviews [15℄-[18℄). \Extra dimensions" then be
ome visual aids whi
h may ormay not help us understand the underlying mathemati
s of nature, but whi
h do not 
orrespond tophysi
al 
oordinates.The third approa
h to the problem of explaining exa
t 
ylindri
ity is to 
onsider the possibility thatit may not ne
essarily be exa
t, relaxing (iii) above. That is, one takes the new 
oordinates at fa
evalue, allowing physi
s to depend on them in prin
iple [19℄-[26℄. This dependen
e presumably appearsin regimes that have not yet been well-probed by experiment - mu
h as the relevan
e of Minkowski'sfourth dimension to me
hani
s was not apparent at non-relativisti
 speeds. When dependen
e onthe extra dimensions is in
luded, one �nds that the �ve-dimensional Einstein equations 5RAB = 0
ontain the four-dimensional ones 4G�� =4 T�� with a general energy-momentum tensor 4T�� insteadof just the ele
tromagneti
 one 4TEM�� .2.4 The Compa
ti�ed Approa
hKlein showed in 1926 [2℄, [36℄ that Kaluza's 
ylinder 
ondition would arise naturally if the �fth 
oor-dinate had (1) a 
ir
ular topology, in whi
h 
ase physi
al �elds would depend on it only periodi
ally,and 
ould be Fourier-expanded; and (2) a small enough (\
ompa
ti�ed") s
ale, in whi
h 
ase theenergies of all Fourier modes above the ground state 
ould be made so high as to be unobservable(ex
ept - as we now add - possibly in the very early universe). Physi
s would thus be e�e
tively in-dependent of Kaluza's �fth dimension, as desired. As a bonus, it seemed early on that the expansionof the ele
tromagneti
 �eld into Fourier modes 
ould in prin
iple explain the quantization of ele
tri

harge. (This aspe
t of the theory has had to be abandoned, however, as the 
harge-to-mass ratio ofthe higher modes did not mat
h that of any known parti
les. Nowadays elementary 
harges are iden-ti�ed with the ground state Fourier modes only, and their small mass is attributed to spontaneoussymmetry-breaking.)The s
heme was not perfe
t; one still needed to explain why extra dimensions di�ered so markedlyin topology and s
ale from the familiar spa
etime ones. Their size in parti
ular had to be extremelysmall (below the attometer (1am = 10�18m) s
ale, a

ording to 
urrent experiment [55℄). There wasalso the question of how to interpret a new s
alar �eld whi
h appeared in the theory. These diÆ
ultieshave, however, proved manageable. S
alar �elds are not as threatening as they on
e appeared; onenow just assumes that they are too massive to have been observed. And an entire industry has grownup around the study of 
ompa
ti�
ation me
hanisms and the topology of 
ompa
t spa
es.In fa
t, Klein's strategy of 
ompa
tifying extra dimensions has 
ome to dominate higher-dimensionaluni�ed physi
s, leading in re
ent years to new �elds like eleven-dimensional supergravity and ten-dimensional superstring theory. We will survey these developments in this se
tion, and make 
onta
twith many of them throughout this report, but it is not our purpose to review them exhaustively.For this the reader is dire
ted to the books [3℄-[8℄, and review arti
les [9℄-[14℄ mentioned already.Our goal here is to take a broad view, 
omparing and 
ontrasting the various approa
hes to higher-5



dimensional gravity, and fo
using in parti
ular on those whi
h have re
eived less 
riti
al attention inthe literature. A semanti
 note: while the term \Kaluza-Klein theory" ought, stri
tly speaking, toapply only to models whi
h assume both 
ylindri
ity and 
ompa
ti�ed dimensions, we follow popu-lar usage and apply the term to any higher-dimensional uni�ed theory of gravity in whi
h the extradimensions are regarded as real, whether 
ompa
ti�ed or not. When distinguishing between thesetwo, we will refer in the latter 
ase to \non
ompa
ti�ed Kaluza-Klein theories," though this is tosome extent a 
ontradi
tion in terms.2.5 Compa
ti�
ation Me
hanismsA diÆ
ulty with 
ompa
ti�
ation is that one 
annot impose it indis
riminately on whi
hever dimen-sions one likes - the 
ombination of ma
ros
opi
 four-dimensional spa
etime plus the 
ompa
ti�edextra-dimensional spa
e must be a solution of the higher-dimensional Einstein �eld equations. Inparti
ular, one should be able to re
over a \ground state" solution 
onsisting of four-dimensionalMinkowski spa
e plus a d-dimensional 
ompa
t manifold. Although this is straightforward whend = 1 (Klein's 
ase), the same thing is not true in higher-dimensional theories like that of Cho &Freund, where the 
ompa
t spa
es are in general 
urved [7℄, [56℄-[59℄. The 
onsequen
es of ignoringthis in
onsisten
y in \Kaluza-Klein ansatz" have been emphasized by Du� et al. [11℄, [12℄, [14℄, [60℄.This and related problems have even led Cho [61℄-[64℄ to 
all for the abandonment of Klein's \zeromodes approximation" as a means of dimensional redu
tion.In general, however, spa
etime 
an still be 
oaxed into 
ompa
tifying in the desired manner - atthe 
ost of altering the higher-dimensional va
uum Einstein equations, either by in
orporating torsion[65℄-[68℄, adding higher-derivative terms (eg., R2) onto the Einstein a
tion [69℄, or - last but not least- adding an expli
it higher-dimensional energy-momentum tensor to the theory. If 
hosen judi
iously,this last will indu
e \spontaneous 
ompa
ti�
ation" of the extra dimensions, as �rst demonstratedby Cremmer & S
herk [70℄, [71℄. This approa
h, though, sa
ri�
es Einstein and Kaluza's dream[50℄-[54℄ of a purely geometri
al uni�ed theory of nature. Rather than explaining the \base wood"of four-dimensional matter and for
es as manifestations of the \pure marble" of geometry in higherdimensions, one has essentially been driven to invent new kinds of wood. Weinberg [72℄ has likenedthis situation to the fable of \stone soup," in whi
h a mira
ulous stew, allegedly made out of ro
ks,turns out on deeper investigation to be made from ro
ks plus various kinds of vegetables, meat andspi
es.In spite of this aestheti
 drawba
k, however, the idea of spontaneous 
ompa
ti�
ation gainedrapid a

eptan
e [73℄-[78℄ and has be
ome the standard way to re
on
ile extra dimensions withthe observed four-dimensionality of spa
etime in Kaluza-Klein theory (see Bailin & Love [13℄ fora review). An important variation is that of Candelas & Weinberg [79℄, [80℄, who showed thatthe quantum Casimir energy of massless higher-dimensional �elds, when 
ombined with a higher-dimensional 
osmologi
al 
onstant, 
an also 
ompa
tify the extra dimensions in a satisfa
tory way.Unfortunately, some 104 � 105 matter �elds are required.2.6 D = 11 SupergravityOne way to make the addition \by hand" of extra matter �elds more natural was to make the theorysupersymmetri
 (ie., to mat
h up every boson with an as-yet undete
ted fermioni
 \superpartner" andvi
e versa). The reason for this is that the (
ompa
ti�ed) Kaluza-Klein programme of \explaining"gauge symmetries as (restri
ted) higher-dimensional spa
etime symmetries 
an only give rise to four-dimensional gauge bosons. If the theory is to in
lude fermioni
 �elds, as required by supersymmetry,then these �elds at least must be put in by hand. (This limitation may not ne
essarily applyto non
ompa
ti�ed Kaluza-Klein theories, in whi
h the modest dependen
e on extra 
oordinates -6



subje
t to experimental 
onstraints - gives the Einstein equations a ri
h enough stru
ture that matterof a very general kind 
an be \indu
ed" in the four-dimensional universe by pure geometry in higherdimensions. In �ve dimensions, for example, one 
an obtain not only photons, the gauge bosons ofele
tromagnetism, but also dustlike, va
uum, or \sti�" matter.)Supersymmetri
 gravity (\supergravity") began life as a four-dimensional theory in 1976 [81℄, [82℄,but qui
kly made the jump to higher dimensions (\Kaluza-Klein supergravity"). It was parti
ularlysu

essful in D = 11, for three prin
ipal reasons. First, Nahm [83℄ showed that eleven was themaximum number of dimensions 
onsistent with a single graviton (and an upper limit of two onparti
le spin). This was followed by Witten's proof [84℄ that eleven was also the minimum numberof dimensions required for a Kaluza-Klein theory to unify all the for
es in the standard model ofparti
le physi
s (ie., to 
ontain the gauge groups of the strong (SU(3)) and ele
troweak (SU(2) �U(1)) intera
tions). The 
ombination of supersymmetry with Kaluza-Klein theory thus appearedto uniquely �x the dimensionality of spa
etime. Se
ondly, whereas in lower dimensions one had to
hoose between several possible 
on�gurations for the extra matter �elds, Cremmer, Julia & S
herk[85℄ demonstrated in 1978 that in D = 11 exa
tly one 
hoi
e was 
onsistent with the requirements ofsupersymmetry (in parti
ular, that there be equal numbers of Bose and Fermi degrees of freedom).In other words, while a higher-dimensional energy-momentum tensor was still required, its form atleast appeared less 
ontrived. Finally, Freund & Rubin [86℄ showed in 1980 that 
ompa
ti�
ation ofthe D = 11 model 
ould o

ur in only two ways: to seven or four 
ompa
t dimensions, leaving four(or seven, respe
tively) ma
ros
opi
 ones. Not only did eleven-dimensional spa
etime appear to beuniquely favoured for uni�
ation, but it also split perfe
tly to produ
e the observed four-dimensionalworld. (The other possibility, of a ma
ros
opi
 seven-dimensional world, 
ould unfortunately not beruled out, and in fa
t at least one su
h model was expli
itly 
onstru
ted as well [87℄.) Buoyed by thesesu

esses, eleven-dimensional supergravity appeared set by the mid 1980s as a leading 
andidate forthe hoped-for \theory of everything" (see [8℄, [12℄, [88℄ for reviews, and [89℄ for an extensive 
olle
tionof papers. A nonte
hni
al introdu
tion is given in [90℄.)A number of blemishes, however - one aestheti
 and three more pra
ti
al - have dampened thisinitial enthusiasm. Firstly, the 
ompa
t manifolds originally envisioned by Witten [84℄ (those 
ontain-ing the standard model) turned out not to generate quarks or leptons, and to be in
ompatible withsupersymmetry [8℄, [13℄. Their most su

essful repla
ements are the 7-sphere and the \squashed" 7-sphere [12℄, des
ribed respe
tively by the symmetry groups SO(8) and SO(5)�SU(2). These groups,however, unfortunately do not 
ontain the minimum symmetry requirements of the standard model(SU(3)� SU(2)� U(1)). This is 
ommonly re
ti�ed by adding more matter �elds, the \
ompositegauge �elds" [91℄, to the eleven-dimensional Lagrangian. Se
ondly, it is very diÆ
ult to build 
hiral-ity (ne
essary for a realisti
 fermion model) into an eleven-dimensional theory [84℄, [92℄. A variety ofremedies have been proposed for this, in
luding the ubiquitous additional higher-dimensional gauge�elds [73℄, [77℄, non
ompa
t internal manifolds [93℄-[99℄, and extensions of Riemannian geometry[100℄-[102℄. Thirdly, D = 11 supergravity theory is marred by a large 
osmologi
al 
onstant in fourdimensions, whi
h is diÆ
ult to remove, even by �ne-tuning [7℄, [8℄. Finally, quantization of thetheory leads inevitably to anomalies [89℄.Some of these diÆ
ulties 
an be eased by des
ending to ten dimensions: 
hirality is easier to obtain[92℄, and many of the anomalies disappear [103℄. However, the introdu
tion of 
hiral fermions leadsto new kinds of anomalies. And the primary bene�t of the D = 11 theory - its uniqueness - is lost,sin
e ten dimensions are not spe
ially favoured, and the higher-energy theory does not break downnaturally into four ma
ros
opi
 and six 
ompa
t dimensions. (One 
an still �nd solutions in whi
hthis happens, but there is no reason why they should be preferred.) In fa
t, mostD = 10 supergravitymodels not only require ad ho
 higher-dimensional matter �elds to ensure proper 
ompa
ti�
ation,but entirely ignore gauge �elds arising from the Kaluza-Klein me
hanism (ie., from symmetries ofthe 
ompa
t manifold), so that all the gauge �elds are e�e
tively put into the theory by hand [8℄.Kaluza's original aim of explaining for
es in geometri
al terms is thus abandoned 
ompletely.7



2.7 D = 10 Superstring TheoryA breakthrough in solving the uniqueness and anomaly problems of D = 10 theory o

ured whenGreen & S
hwarz [104℄ and Gross et al. [105℄ showed that there were two, and only two ten-dimensional supergravity models in whi
h all anomalies 
ould be made to vanish: those based onthe groups SO(32) and E8 � E8 respe
tively. On
e again, extra terms (known as Chapline-Mantonterms) had to be added to the higher-dimensional Lagrangian [8℄. This time, however, the additionwas not 
ompletely arbitrary; the extra terms were those whi
h would appear anyway if the theorywere a low-energy approximation to 
ertain kinds of superstring theory.The state of the art in 
ompa
ti�ed Kaluza-Klein theory, then, has shifted from supergravitytheories to superstring theories, the main signi�
an
e of the former now being as low-energy limits ofthe latter [89℄. Superstrings (supersymmetri
 generalizations of strings) avoid the generi
 predi
tionof ta
hyons that plagued the �rst string theories [106℄, but retain their best features, espe
ially thepossibility of an anomaly-free path to quantum gravity [107℄. In fa
t, their many virtues make themthe 
urrent favorite 
ontender for a \theory of everything" [108℄. Conne
tions have re
ently beenmade between 
ertain superstring states and extreme bla
k holes [14℄, and it has even been arguedthat superstrings 
an help resolve the long-standing bla
k hole information paradox [109℄.Something of a uniqueness problem has persisted for D = 10 superstrings in that the groupsSO(32) and E8 � E8 admit �ve di�erent string theories between them. But this diÆ
ulty hasre
ently been addressed by Witten [376℄, who showed that it is possible to view these �ve theoriesas aspe
ts of a single underlying theory, now known as M-theory (for \Membrane") [377℄. The low-energy limit of this new theory, furthermore, turns out to be D = 11 supergravity! So it appearsthat the preferred dimensionality of spa
etime in 
ompa
ti�ed Kaluza-Klein theory may be swit
hingba
k to eleven.Perhaps the biggest obsta
le to a wider a

eptan
e of these theories is the diÆ
ulty of extra
ting
lear-
ut physi
al predi
tions from them. String theory is \promising . . . ," one worker has said,\. . . and promising, and promising" [110℄. M-theory, whi
h (unlike superstring theory) is not per-turbative, is even more opaque; Witten has suggested that the \M" might equally well stand for\Magi
" or \Mystery" at present [378℄. We will not 
onsider these interesting developments furtherhere, dire
ting the reader instead to the superstring reviews in [8℄, [111℄, [112℄ (a nonte
hni
al a

ountmay be found in [113℄), or the re
ent reviews of M-theory in [378℄, [379℄.2.8 The Proje
tive Approa
hCompa
ti�
ation of extra dimensions is not the only way to explain Kaluza's 
ylinder 
ondition.Another, less well-known approa
h goes ba
k to Veblen & Ho�mann [114℄ in 1931. These authorsshowed that the �fth dimension 
ould be \absorbed into" ordinary four-dimensional spa
etime ifone repla
ed the 
lassi
al (aÆne) tensors of general relativity with proje
tive ones. Rather thanbeing regarded as new 
oordinates, the extra dimensions were e�e
tively demoted to visual aids.Be
ause they were not physi
ally real, there was no need to explain why they were not observed.The pri
e for this resolution of the problem was that one had to alter the geometri
al foundation ofEinstein's theory. This idea re
eived attention from Jordan, Pauli and several others over the years[39℄, [115℄-[122℄. Early versions of the theory ran afoul of experimental 
onstraints on the Brans-Di
ke parameter ! and had to be ruled out as untenable [15℄. However the proje
tive approa
hhas been revived in at least two new formulations. That of Lessner [15℄ assigns the s
alar �eld apurely mi
ros
opi
 meaning; this has interesting 
onsequen
es for elementary parti
les [123℄-[126℄.The other, due to S
hmutzer [16℄-[18℄, endows the va
uum with a spe
ial kind of higher-dimensionalmatter, the \non-geometrizable substrate," thereby sa
ri�
ing Einstein's dream of redu
ing physi
sto geometry. This theory, however, does make a number of testable predi
tions [17℄, [127℄-[129℄ whi
h8



are so far 
ompatible with observation.2.9 The Non
ompa
ti�ed Approa
hAn alternative to both the 
ompa
ti�ed and proje
tive approa
hes is to take the extra dimensions atfa
e value, without ne
essarily 
ompa
tifying them, and assume that nature is only approximatelyindependent of them - mu
h as it was on Minkowski's fourth 
oordinate at nonrelativisti
 speeds. Inother words, one avoids having to explain why 
ylindri
ity should be exa
t by relaxing it in prin
iple.Of 
ourse, the question remains as to why nature should be so nearly 
ylindri
al in pra
ti
e. If theextra dimensions are lengthlike, then one might try to answer this by supposing that parti
les aretrapped near a four-dimensional hypersurfa
e by a potential well. Ideas of this kind have been aroundsin
e at least 1962 [130℄; for re
ent dis
ussions see [131℄-[134℄.Con�ning potentials are not, however, an obvious improvement over 
ompa
ti�
ation me
hanismsin terms of e
onomy of thought. An alternative is to take Minkowski's example more literally andentertain the idea that extra dimensions, like time, might not ne
essarily be lengthlike. In this 
asethe explanation for the near-
ylindri
ity of nature is to be found in the physi
al interpretation of theextra 
oordinates; ie., in the values of the dimension-transposing parameters (like 
) needed to givethem units of length. The �rst su
h proposal of whi
h we are aware is the 1983 \spa
e-time-mass"theory of Wesson [135℄, who suggested that a �fth dimension might be asso
iated with rest mass viax4 = Gm=
2. The 
hief e�e
t of this new 
oordinate on four-dimensional physi
s was that parti
lerest mass, usually assumed to be 
onstant, varied with time. The variation was, however, small andquite 
onsistent with experiment. This model has been studied in some detail, parti
ularly withregard to its 
onsequen
es for astrophysi
s and 
osmology, by Wesson [19℄, [136℄-[139℄ and others[140℄-[148℄, [149℄-[158℄, [159℄-[163℄, and has been extended to more than �ve dimensions by Fukui[164℄, [165℄, with the 
onstants ~ and e playing roles analogous to 
 and G.Variable gravity theories are, of 
ourse, not new. What is new in the models just des
ribed -and what is important about non
ompa
ti�ed Kaluza-Klein theory in prin
iple - is not so mu
h theparti
ular physi
al interpretation one atta
hes to the new 
oordinates, but the bare fa
t that physi
sis allowed to depend on them at all. It is 
learly of interest to study the higher-dimensional Einsteinequations with a general dependen
e on the extra 
oordinates; ie., without any pre
on
eived notionsas to their physi
al meaning. A pioneering e�ort in this dire
tion was made in 1986 by Yoshimura[166℄, who however 
onsidered only the 
ase where the d-dimensional part of the (4 + d)-spa
e 
oulddepend on the new 
oordinates. The general theory, in whi
h any part of the metri
 
an depend onthe �fth 
oordinate, has been explored re
ently by Wesson and others [19℄-[26℄, and its impli
ationsfor 
osmology [167℄-[170℄, [171℄-[179℄ and astrophysi
s [180℄-[185℄, [186℄-[194℄ have be
ome the fo
usof a growing resear
h e�ort. As this bran
h of Kaluza-Klein theory has not yet been reviewed in a
omprehensive manner, we propose to devote spe
ial attention to it in this report. Our intentionis to 
ompare and 
ontrast this bran
h of the subje
t with other ones, however, so we will makefrequent 
onta
t with the 
ompa
ti�ed and (to a lesser extent) proje
tive theories.3 The Kaluza Me
hanismKaluza uni�ed ele
tromagnetism with gravity by applying Einstein's general theory of relativity to a�ve-, rather than four-dimensional spa
etime manifold. In what follows, we 
onsider generalizationsof his pro
edure that may be new to some readers, so it will be advantageous to brie
y review themathemati
s and underlying assumptions here.
9



3.1 Matter from GeometryThe Einstein equations in �ve dimensions with no �ve-dimensional energy-momentum tensor are:ĜAB = 0 ; (1)or, equivalently: R̂AB = 0 ; (2)where ĜAB � R̂AB � R̂ĝAB=2 is the Einstein tensor, R̂AB and R̂ = ĝABR̂AB are the �ve-dimensionalRi

i tensor and s
alar respe
tively, and ĝAB is the �ve-dimensional metri
 tensor. (Throughoutthis report 
apital Latin indi
es A, B, . . . run over 0, 1, 2, 3, 4, and �ve-dimensional quantities aredenoted by hats.) These equations 
an be derived by varying a �ve-dimensional version of the usualEinstein a
tion: S = 116�Ĝ Z R̂p�ĝd4xdy ; (3)with respe
t to the �ve-dimensional metri
, where y = x4 represents the new (�fth) 
oordinate andĜ is a \�ve-dimensional gravitational 
onstant."The absen
e of matter sour
es in these equations re
e
ts what we have emphasized as Kaluza's�rst key assumption (i), inspired by Einstein: that the universe in higher dimensions is empty. Theidea is to explain matter (in four dimensions) as a manifestation of pure geometry (in higher ones).If, instead, one introdu
ed new kinds of higher-dimensional matter, then one would have gained littlein e
onomy of thought. One would, so to speak, be getting Weinberg's \stone soup" [72℄ from a 
an.3.2 A Minimal Extension of General RelativityThe �ve-dimensional Ri

i tensor and Christo�el symbols are de�ned in terms of the metri
 exa
tlyas in four dimensions: R̂AB = �C�̂CAB � �B�̂CAC + �̂CAB�̂DCD � �̂CAD�̂DBC ;�̂CAB = 12 ĝCD(�AĝDB + �B ĝDA � �DĝAB) : (4)Note that, aside from the fa
t that tensor indi
es run over 0-4 instead of 0-3, all is exa
tly as itwas in Einstein's theory. We have emphasized this as the se
ond key feature (ii) of Kaluza's approa
hto uni�
ation.Everything now depends on one's 
hoi
e for the form of the �ve-dimensional metri
. In general,one identi�es the ��-part of ĝAB with g�� (the four-dimensional metri
 tensor), the �4-part withA� (the ele
tromagneti
 potential), and the 44-part with � (a s
alar �eld). A 
onvenient way toparametrize things is as follows:(ĝAB) = � g�� + �2�2A�A� ��2A���2A� �2 � ; (5)where we have s
aled the ele
tromagneti
 potential A� by a 
onstant � in order to get the rightmultipli
ative fa
tors in the a
tion later on. (Throughout this report, Greek indi
es �, �, . . . run10



over 0, 1, 2, 3, and small Latin indi
es a, b, . . . run over 1, 2, 3. The four-dimensional metri
 signatureis taken to be (+ - - -), and we work in units su
h that 
 = 1. In addition, for 
onvenien
e anda

ord with other work, we set ~ = 1 in x3, and G = 1 in in x7 and x8.)3.3 The Cylinder ConditionIf one then applies the third key feature (iii) of Kaluza's theory (the 
ylinder 
ondition), whi
h meansdropping all derivatives with respe
t to the �fth 
oordinate, then one �nds, using the metri
 (5) andthe de�nitions (4), that the ��-, �4-, and 44-
omponents of the �ve-dimensional �eld equation (2)redu
e respe
tively to the following �eld equations [15℄, [41℄ in four dimensions:G�� = �2�22 TEM�� � 1��r�(���)� g�����r�F�� = �3���� F�� ; �� = �2�34 F��F �� ; (6)where G�� � R���Rg��=2 is the Einstein tensor, TEM�� � g��F
ÆF 
Æ=4�F 
�F�
 is the ele
tromagneti
energy-momentum tensor, and F�� � ��A� � ��A�. There are a total of 10 + 4 + 1 = 15 equations,as expe
ted sin
e there are �fteen independent elements in the �ve-dimensional metri
 (5).3.4 The Case � = 
onstantIf the s
alar �eld � is 
onstant throughout spa
etime, then the �rst two of eqs. (6) are just theEinstein and Maxwell equations:G�� = 8�G�2TEM�� ; r�F�� = 0 ; (7)where we have identi�ed the s
aling parameter � in terms of the gravitational 
onstant G (in fourdimensions) by: � � 4p�G : (8)This is the result originally obtained by Kaluza and Klein, who set � = 1. (The same thing hasdone by some subsequent authors employing \spe
ial 
oordinate systems" [9℄, [195℄.) The 
ondition �= 
onstant is, however, only 
onsistent with the the third of the �eld equations (6) when F��F �� = 0,as was �rst pointed out by Jordan [39℄, [40℄ and Thiry [41℄. The fa
t that this took twenty years tobe a
knowledged is a measure of the deep suspi
ion with whi
h s
alar �elds were viewed in the �rsthalf of this 
entury.Nowadays the same derivation is usually written in variational language. Using the metri
 (5) andthe de�nitions (4), and invoking the 
ylinder 
ondition not only to drop derivatives with respe
t toy, but also to pull R dy out of the a
tion integral, one �nds that eq. (3) 
ontains three 
omponents[10℄: S = � Z d4xp�g�� R16�G + 14�2F��F �� + 23�2 �������2 � ; (9)where G is de�ned in terms of its �ve-dimensional 
ounterpart Ĝ by:11



G � Ĝ= Z dy ; (10)and where we have used equation (8) to bring the fa
tor of 16�G inside the integral. As before, ifone takes � = 
onstant, then the �rst two 
omponents of this a
tion are just the Einstein-Maxwella
tion for gravity and ele
tromagneti
 radiation (s
aled by fa
tors of �). The third 
omponent is thea
tion for a massless Klein-Gordon s
alar �eld.The fa
t that the a
tion (3) leads to (9), or - equivalently - that the sour
eless �eld equations(2) lead to (6) with sour
e matter, 
onstitutes the 
entral mira
le of Kaluza-Klein theory. Four-dimensional matter (ele
tromagneti
 radiation, at least) has been shown to arise purely from thegeometry of empty �ve-dimensional spa
etime. The goal of all subsequent Kaluza-Klein theories hasbeen to extend this su

ess to other kinds of matter.3.5 The Case A� = 0: Brans-Di
ke TheoryIf one does not set � = 
onstant, then Kaluza's �ve-dimensional theory 
ontains besides ele
tro-magneti
 e�e
ts a Brans-Di
ke-type s
alar �eld theory, as be
omes 
lear when one 
onsiders the
ase in whi
h the ele
tromagneti
 potentials vanish, A� = 0. Without the 
ylinder 
ondition, thiswould be no more than a 
hoi
e of 
oordinates, and would not entail any loss of algebrai
 generality.(It would be exa
tly analogous to the 
ommon pro
edure in ordinary ele
trodynami
s of 
hoosingfour-spa
e 
oordinates in whi
h either the ele
tri
 or magneti
 �eld disappears.) With the 
ylinder
ondition, however, we are e�e
tively working in a spe
ial set of 
oordinates, so that the theory isno longer invariant with respe
t to general (ie., �ve-dimensional) 
oordinate transformations. Therestri
tion A� = 0 is, therefore, a physi
al and not merely mathemati
al one, and restri
ts us to the\graviton-s
alar se
tor" of the theory.This is a

eptable in some 
ontexts - in homogeneous and isotropi
 situations, for example, whereo�-diagonal metri
 
oeÆ
ients would pi
k out preferred dire
tions; or in early-universe models whi
hare dynami
ally dominated by s
alar �elds. Negle
ting the A�-�elds, then, eq. (5) be
omes:(ĝAB) = � g�� 00 �2 � ; (11)With this metri
, the �eld equations (2), and Kaluza's assumptions (i) - (iii) as before, the a
tion(3) redu
es to: S = � 116�G Z d4xp�gR� : (12)This is the spe
ial 
ase ! = 0 of the Brans-Di
ke a
tion [196℄:SBD = � Z d4xp�g� R�16�G + !�������2 �+ Sm ; (13)where ! is the dimensionless Brans-Di
ke 
onstant and the term Sm refers to the a
tion asso
iatedwith any matter �elds whi
h may be 
oupled to the metri
 or s
alar �eld.The value of ! is of 
ourse 
onstrained to be greater than �500 by observation [197℄, so this simplemodel is 
ertainly not viable, in the present era at least. One 
an however evade this limit by addinga nonzero potential V(�) to the above a
tion, as in extended in
ation [198℄ and other theories [199℄,[200℄; or by allowing the Brans-Di
ke parameter ! to vary as a fun
tion of �, as in hyperextended[201℄ and other in
ationary models [202℄. 12



3.6 Conformal Res
alingOne 
an also re-formulate the problem by 
arrying out a Weyl, or 
onformal res
aling of the metri
tensor. Conformal fa
tors have begun to appear frequently in papers on Kaluza-Klein theory, butthey have as yet re
eived little attention in reviews of the subje
t, so we will dis
uss them brie
yhere, referring the reader to the literature for details.The extra fa
tor of � in the a
tion (9) above implies that, stri
tly speaking, the s
alar �eld wouldhave to be 
onstant throughout spa
etime [10℄, [13℄ in order for the gravitational part of the a
tionto be in 
anoni
al form. Some authors [9℄, [195℄ have in fa
t set it equal to one by de�nition, thoughthis is of 
ourse not a generally 
ovariant pro
edure. The o�ending fa
tor 
an however be removedby 
onformally res
aling the �ve-dimensional metri
:ĝAB ! ĝ0AB = 
2ĝAB ; (14)where 
2 > 0 is the 
onformal (or Weyl) fa
tor, a fun
tion of the �rst four 
oordinates only (assumingKaluza's 
ylinder 
ondition). This is one step removed from the simplest possible realization ofKaluza's idea. In 
ompa
ti�ed and proje
tive theories, however, there 
an be no physi
al obje
tion tosu
h a pro
edure sin
e it takes pla
e \in higher dimensions" whi
h are not a

essible to observation.Questions only arise in the pro
ess of dimensional redu
tion; ie., in interpreting the \real," four-dimensional quantities in terms of the res
aled �ve-dimensional ones.The four-dimensional metri
 tensor is res
aled by the same fa
tor as the �ve-dimensional one(g�� ! g0�� = 
2g��), and this has the following e�e
t on the four-dimensional Ri

i s
alar [203℄:R! R0 = 
�2�R + 6�

 � : (15)A 
onvenient parametrization is obtained by making the trivial rede�nition �2 ! � and thenintrodu
ing the 
onformal fa
tor 
2 = ��1=3, so that the �ve-dimensional metri
 reads:(ĝ0AB) = ��1=3� g�� + �2�A�A� ��A���A� � � ; (16)The same pro
edure as before then leads [8℄, [12℄, [13℄ to the following 
onformally res
aled a
tioninstead of eq. (9) above:S 0 = � Z d4xp�g0� R016�G + 14�F 0��F 0�� + 16�2 �0���0���2 � ; (17)where primed quantities refer to the res
aled metri
 (ie., �0�� = g0�����), and G and � are de�nedas before. The gravitational part of the a
tion then has the 
onventional form, as desired.The Brans-Di
ke 
ase, obtained by putting A� = 0 in the metri
, is also modi�ed by the presen
eof the 
onformal fa
tor. One �nds (again making the rede�nition �2 ! � and using 
2 = ��1=3)that the a
tion (12) be
omes [13℄:S 0 = � Z d4xp�g0� R016�G + 16�2 �0���0���2 � ; (18)In terms of the \dilaton" �eld � � ln�/(p3�), this a
tion 
an be written:S 0 = � Z d4xp�g0� R016�G + 12�0���0��� ; (19)13



whi
h is the 
anoni
al a
tion for a minimally 
oupled s
alar �eld with no potential [204℄.3.7 Conformal AmbiguityThe question of 
onformal ambiguity arises when we ask, \Whi
h is the real four-dimensional metri
(ie., the one responsible for Einstein's gravity) - the original g��, or the res
aled g0��?" The issue wasalready raised at least as far ba
k as 1955 by Pauli [119℄. (The res
aled metri
 is sometimes referred toin the literature as the \Pauli metri
," as opposed to the unres
aled \Jordan metri
.") Most authorshave worked with the traditional (unres
aled) metri
, if indeed they have troubled themselves overthe matter at all [205℄. Others [206℄, [207℄ have 
onsidered the interesting idea of 
oupling visiblematter (in
luding that involved in the 
lassi
al tests of general relativity) to the Jordan metri
, butallowing dark matter to 
ouple to a res
aled Pauli metri
. In re
ent years, a variety of new argumentshave been advan
ed in favor of regarding the res
aled metri
 as the true \Einstein metri
" for alltypes of matter in 
ompa
ti�ed Kaluza-Klein theory. The following paragraph is intended as a briefreview of these; many are dis
ussed more thoroughly in [205℄.The �rst use of 
onformal res
aling to pi
k out \physi
al �elds" was in 
ertain ten-dimensionalsupergravity [208℄ and superstring [209℄ models of the early 1980s. It then appeared in work onthe quantum aspe
ts of Kaluza-Klein theory [210℄, and on the stability of 
ompa
ti�ed Kaluza-Klein
osmologies [211℄, [212℄. In these papers it was asserted that 
onformal ambiguity a�e
ted the physi
sat the quantum but not the 
lassi
al level. This was supported by a demonstration [213℄ that themass of a �ve-dimensional Kaluza-Klein monopole was invariant with respe
t to 
onformal res
aling,although it was spe
ulated in this paper that the addition of matter �elds would 
ompli
ate thesituation. Cho [207℄ 
on�rmed this suspi
ion by showing expli
itly that the 
onformal invarian
e ofthe Brans-Di
ke a
tion (13) would be broken for Sm = 0. This resulted in di�erent matter 
ouplingsto the metri
 for di�erent 
onformal fa
tors, whi
h would manifest themselves as \�fth for
e"-typeviolations of the weak equivalen
e prin
iple [214℄. He argued in addition that only one 
onformalfa
tor - the fa
tor ��1=3 used above - 
ould allow one to properly interpret the metri
 as a masslessspin-two graviton [207℄; and moreover that without this fa
tor the kineti
 energy of the s
alar �eldwould be unbounded from below, making the theory unstable [61℄. This last point has also beenemphasized by Sokolowski and others [205℄, [215℄, [216℄. (Note that the 
onformal fa
tor p' used bythese authors is the same as the one dis
ussed above; the exponent depends on whether one res
alesthe �ve-, or only the four-dimensional metri
. The s
alar ' is related to � simply by ' = ��3=2.) Ithas also been 
laimed that 
onformal res
aling is ne
essary in s
ale-invariant Kaluza-Klein 
osmology[217℄ if one is to properly interpret the e�e
tive four-dimensional Friedmann-Robertson-Walker s
alefa
tor. A re
ent dis
ussion of 
onformal ambiguity in 
ompa
ti�ed Kaluza-Klein theory is found in[218℄.There is also something mu
h like a 
onformal res
aling of 
oordinates in proje
tive Kaluza-Kleintheory, notably in the work of S
hmutzer after 1980 [16℄, [17℄, [127℄, [128℄, where it is introdu
edin order to eliminate unwanted se
ond-order s
alar �eld terms from the generalized gravitational�eld equations. In non
ompa
ti�ed Kaluza-Klein theory, by 
ontrast, there has been no dis
ussionof 
onformal res
aling. This is largely be
ause the extra dimensions are regarded as physi
al (ifnot ne
essarily lengthlike or timelike). The �ve-dimensional metri
, in e�e
t, be
omes a

essible (inprin
iple) to observation, and 
onformally transforming it at will may no longer be so inno
uous.We will not 
onsider the issue further in this report; interested readers are dire
ted to Sokolowski'spaper [205℄.
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4 Compa
ti�ed TheoriesSo far we have introdu
ed Kaluza's theory, with its 
ylinder 
ondition, but have deliberately post-poned dis
ussion of 
ompa
ti�
ation be
ause we wish to emphasize that it is logi
ally distin
t from
ylindri
ity, and in parti
ular that it is only one me
hanism by whi
h to explain the apparentlyfour-dimensional nature of the world. We now turn to 
ompa
ti�ed Kaluza-Klein theory, but keepour dis
ussion short as this subje
t has been thoroughly reviewed elsewhere ([3℄-[7℄, [8℄-[14℄, [195℄).4.1 Klein's Compa
ti�
ation Me
hanismThe somewhat 
ontrived nature of Kaluza's assumption, that a �fth dimension exists but that nophysi
al quantities depend upon it, has stru
k generations of uni�ed �eld theorists as inadequate.Klein arrived on the s
ene during the tremendous ex
itement surrounding the birth of quantumtheory, and perhaps not surprisingly had the idea [2℄, [36℄ of explaining the la
k of dependen
e bymaking the extra dimension very small. (The story that this was suggested to him on hearing a
olleague address him by his last name has, so far as we know, no basis in histori
al fa
t.)Klein assumed that the �fth 
oordinate was to be a lengthlike one (like the �rst three), andassigned it two properties: (1) a 
ir
ular topology (S1); and (2) a small s
ale. Under property (1),any quantity f(x; y) (where x = (x0, x1, x2, x3) and y = x4) be
omes periodi
; f(x; y) = f(x; y+2�r)where r is the s
ale parameter or \radius" of the �fth dimension. Therefore all the �elds 
an beFourier-expanded:g��(x; y) = n=1Xn=�1 g(n)�� (x)einy=r ; A�(x; y) = n=1Xn=�1A(n)� (x)einy=r ; (20)
�(x; y) = n=1Xn=�1�(n)einy=r ;where the supers
ript (n) refers to the nth Fourier mode. Thanks to quantum theory, these modes
arry a momentum in the y-dire
tion of the order jnj=r. This is where property (2) 
omes in: ifr is small enough, then the y-momenta of even the n = 1 modes will be so large as to put thembeyond the rea
h of experiment. Hen
e only the n = 0 modes, whi
h are independent of y, will beobservable, as required in Kaluza's theory.How big 
ould the s
ale size r of a fourth spatial dimension be? The strongest 
onstraints have
ome from high-energy parti
le physi
s, whi
h probes in
reasingly higher mass s
ales and 
orrespond-ingly smaller length s
ales (the Compton wavelength of massive modes is of the order M�1). Exper-iments of this kind [55℄ presently 
onstrain r to be less than an attometer in size (1am = 10�18m).Theorists often set r equal to the Plan
k length `pl � 10�35m, whi
h is both a natural value andsmall enough to guarantee that the mass of any n = 0 Fourier modes lies beyond the Plan
k massmpl � 1019 GeV.In general, one identi�es Kaluza's �ve-dimensional metri
 (5) with the full (Fourier-expanded)metri
 ĝAB(x; y), higher modes and all. One then makes what is known in 
ompa
ti�ed theoryas the \Kaluza-Klein ansatz," whi
h 
onsists in dis
arding all massive (n 6= 0) Fourier modes, asjusti�ed above. In the �ve-dimensional 
ase, the Kaluza-Klein ansatz amounts to simply droppingthe y-dependen
y of g��, A�, and �, giving the e�e
tive four-dimensional \low-energy" theory of thegraviton g(0)�� , photon A(0)� and s
alar �(0). For higher dimensions, though, the relationship betweenthe full metri
 and the metri
 obtained with the \Kaluza-Klein ansatz" is more 
ompli
ated, as has15



been emphasized by Du� et al. [11℄, [12℄. These authors also stress the di�eren
e between these twometri
s and a third important metri
 in Kaluza-Klein theory, the ground state metri
 hĝABi whi
his the va
uum expe
tation value of the full metri
 ĝAB(x; y), and determines the topology of the
ompa
t spa
e. In the �ve-dimensional 
ase des
ribed above, whi
h is topologi
ally M4 � S1, thislooks like: (hĝABi) = � ��� 00 �1 � ; (21)where ��� is the four-dimensional Minkowski spa
e metri
.4.2 Quantization of ChargeThe expansion of �elds into Fourier modes suggests a possible me
hanism to explain 
harge quan-tization, and it is interesting to see what be
ame of this idea [8℄. One begins by introdu
ing �ve-dimensional matter into the theory, leaving aside for the moment questions as to what this would
orrespond to physi
ally. The simplest kind of matter is a massless �ve-dimensional s
alar �eld ̂(x; y). Its a
tion would have a kineti
 part only:S ̂ = � Z d4xdyp�g�A ̂�A ̂ : (22)The �eld 
an be expanded like those in eq. (20): ̂(x; y) = n=1Xn=�1  ̂(n)einy=r : (23)When this expansion is put into the a
tion (22), one �nds (using eq. (16)) the following result [8℄,analogous to eq. (9):S ̂ = ��Z dy�Xn Z d4xp�g � ��� + in�A�r � ̂(n)��� + in�A�r � ̂(n)� n2�r2  ̂(n)2� ; (24)From this a
tion one 
an read o� both the 
harge and mass of the s
alar modes  ̂(n). Comparisonwith the minimal 
oupling rule �� ! ��+ ieA� of quantum ele
trodynami
s (where e is the ele
tron
harge) shows that in this theory the nth Fourier mode of the s
alar �eld  ̂ also 
arries a quantized
harge: qn = n�r �� Z dy��1=2 = np16�Grp� ; (25)where we have normalized the de�nition of A� in the a
tion (17) by dividing out the fa
tor (� R dy)1=2,and made use of the de�nitions (8) and (10) for � and G respe
tively. As a 
orollary to this resultone 
an also 
ome 
lose to predi
ting the value of the �ne stru
ture 
onstant, simply by identifyingthe 
harge q1 of the �rst Fourier mode with the ele
tron 
harge e. Taking rp� to be on the order ofthe Plan
k length `pl = pG, one has: 16



� � q214� � (p16�G=pG)24� = 4 : (26)(An improved determination of rp� would presumably hit 
loser to the mark.) The possibility ofthus explaining an otherwise \fundamental 
onstant" would have made 
ompa
ti�ed �ve-dimensionalKaluza-Klein theory very attra
tive.However, the masses of the s
alar modes are not at all 
ompatible with these ideas. These aregiven by the square root of the 
oeÆ
ient of the  ̂(n)2-term:mn = jnjrp� : (27)If rp� � `pl as we assumed, then the ele
tron mass m1 (
orresponding to the �rst Fourier mode)would be `�1pl ; ie., the Plan
k mass mpl � 1019 GeV, rather than 0.5 MeV. This dis
repan
y ofsome twenty-two orders of magnitude between theory and observation played a large role in theabandonment of �ve-dimensional Kaluza-Klein theory.In modern 
ompa
ti�ed theories, one avoids this problem by doing three things [8℄: (1) identifyingobserved (light) parti
les like the ele
tron with the n = 0, rather than the higher modes of the Fourierexpansion above. From eq. (27), these parti
les therefore have zero mass at the level of the �eldequations. However, one then invokes: (2) the me
hanism of spontaneous symmetry-breaking tobestow on them them the modest masses required by observation. From eq. (25) above, there isalso the problem of explaining how the n = 0 modes 
an have nonzero 
harge (or, more generally,nonzero 
ouplings to the gauge �elds). This is solved by: (3) going to higher dimensions, wheremassless parti
les are no longer \singlets of the gauge group" 
orresponding to the ground state (eg.,the 44-part of the metri
 (21) above). We look at this pro
edure brie
y in the next se
tion.The other way to avoid the problems of 
ompa
ti�ed �ve-dimensional Kaluza-Klein theory is, of
ourse, to look at proje
tive theories, or indeed to loosen the restri
tion of 
ompa
ti�
ation on the�fth dimension altogether. These approa
hes probably mean giving up the ready-made explanationfor 
harge quantization des
ribed above.4.3 Extension to Higher DimensionsThe key to extending the Kaluza-Klein formalism to strong and weak nu
lear intera
tions lies inre
ognizing that ele
tromagnetism has been e�e
tively in
orporated into general relativity by addingU(1) lo
al gauge invarian
e to the theory, in the form of lo
al 
oordinate invarian
e with respe
tto y = x4. Assuming the extra 
oordinate has a 
ir
ular topology and a small s
ale, the theory isinvariant under transformations: y ! y0 = y + f(x) ; (28)where x stands for the four-spa
e 
oordinates x0, x1, x2, x3. With the aid of the usual tensortransformation law (in �ve dimensions):ĝAB ! ĝ0AB = �xC�x0A �xD�x0B ĝCD ; (29)one then �nds that the only 
hange to the metri
 (5) is:A� ! A0� = A� + ��f(x) ; (30)17



whi
h is just a U(1) lo
al gauge transformation. In other words the theory is lo
ally U(1) gaugeinvariant. It is thus not surprising that ele
tromagnetism 
ould be 
ontained in �ve-dimensionalgeneral relativity.To extend the same approa
h to more 
ompli
ated symmetry groups, one goes to higher dimensions[8℄. The metri
 
orresponding to the \Kaluza-Klein ansatz" (n = 0 modes only) 
an be written (
f.eq. (5)): �ĝ(0)AB� = � g�� + ~g��K�i Ai�K�jAj� ~g��K�i Ai�~g��K�i Ai� ~g�� � ; (31)where ~g�� is the metri
 of the d-dimensional 
ompa
t spa
e. Indi
es �, �, . . . run from 1 to d, whileA, B, . . . run from 0 to (3 + d), and �, �, . . . run from 0 to 3 as usual. The K�i are a set of n linearlyindependent Killing ve
tors for the 
ompa
t manifold (i = 1, . . . , n). Analogously to eq. (28) onethen assumes that the theory is lo
ally invariant under transformations:y� ! y0� = y� + nXi=1 "i(x)K�i ; (32)where the "i(x) are a set of n in�nitesimal parameters. Be
ause Killing ve
tors by de�nition satisfy:�K�i�y� ~g�� + �K�i�y� ~g�� +K�i �~g���y� = 0 ; (33)the transformation law (29) leaves the ~g��-part of the metri
 untou
hed, and the only e�e
t on eq.(31) is: Ai� ! Ai0� = Ai� + ��"i(x) ; (34)whi
h is a lo
al gauge transformation whose gauge group is the isometry group (G, say) of the
ompa
t manifold. Thus one might hope that higher-dimensional general relativity 
ould 
ontainany gauge theory.The larger symmetry of the higher-dimensional me
hanism also allows for nonzero 
ouplings ofthe n = 0 modes to the gauge �elds; ie., for \
harged" massless parti
les (whi
h, as we saw, wasimpossible in the �ve-dimensional 
ase). Massless s
alar �elds �a(x) in the adjoint representation ofthe gauge group, for example, 
an be introdu
ed [8℄ via:��a = �a(x)K�a (y) ; (35)and these in general have nonzero 
ouplings to the gauge �elds be
ause the K�a (y) are not 
ovariantly
onstant.4.4 Higher-Dimensional MatterIt is 
ru
ial to realize, however, that the above \ansatz" metri
 (31) does not satisfy Einstein'sequations in 4 + d dimensions unless the Killing ve
tors are independent of fyg, the extra 
oordinates[8℄ - ie., unless the 
ompa
t manifold is 
at [7℄. The ground state metri
 (
f. eq. (21)) is:(hĝABi) = � ��� 00 ~g��(y) � : (36)18



The va
uum Einstein equations are R̂AB � R̂ĝAB=2 = 0. Sin
e hĝ��i = ��� is 
at, R̂�� = 0.Therefore, from the ��-
omponents of the �eld equations, R̂ must vanish. But then the ��-parts ofthe same equations imply that R̂�� = 0; ie., that ~g�� must also be 
at. In what is perhaps a symptomof the split that has developed sin
e Klein between the parti
le physi
s and general relativity sides ofhigher-dimensional uni�
ation resear
h, early workers tended to ignore this \
onsisten
y problem"[11℄, [12℄, and pla
ed no restri
tions on the 
ompa
t manifold while 
ontinuing to use the metri
(31). Re
ently Cho [61℄-[64℄ has raised related questions about whether the \zero modes" might notbe
ome massive (and fyg-dependent) in the event of spontaneous symmetry-breaking, and has evensuggested \ki
king away the ladder" of Klein's Fourier modes entirely, basing dimensional redu
tiona priori on isometry instead.It is now widely re
ognized [13℄ that 
onventional 
ompa
ti�
ation of d extra spatial dimensions(where d > 1) requires either (1) expli
it higher-dimensional matter terms, whi
h 
an indu
e \spon-taneous 
ompa
ti�
ation" by imposing 
onstant 
urvature on the 
ompa
t manifold [70℄, [71℄; or(2) other modi�
ations of the higher-dimensional theory, su
h as the in
lusion of torsion [65℄-[68℄ orhigher-derivative (eg. R2) terms [69℄. Most higher-dimensional 
ompa
ti�ed Kaluza-Klein theoriesrely on higher-dimensional matter of one kind or another. For example, in Freund-Rubin 
om-pa
ti�
ation [86℄, whi
h is the basis of eleven-dimensional supergravity, one introdu
es a third-rankantisymmetri
 tensor �eld ÂBCD with �eld strength:F̂ABCD � �AÂBCD � �BÂACD + �CÂABD � �DÂABC ; (37)and free a
tion given by: SÂ = � 1384�G Z d(4+d)xp�gF̂ABCDF̂ABCD : (38)The e�e
t of this [13℄ is to add an expli
it energy-momentum tensor to the right-hand side of thehigher-dimensional Einstein equations (1):T̂AB = � 148�G�F̂CDEAF̂CDEB � 18 F̂CDEF F̂CDEF ĝAB� ; (39)The matter �elds required to a
hieve 
ompa
ti�
ation are not the end of the story, however. Othersare in general needed if the theory is to 
ontain the full gauge group of the standard model (in
ludingstrong and weak intera
tions). Witten [84℄ has shown that this requires a theory of at least elevendimensions (in
luding the four ma
ros
opi
 ones). While there are an in�nite number of 
ompa
tseven-dimensional manifolds whose isometry groups G � SU(3)� SU(2)� U(1), none of them giverise to realisti
 quark and lepton representations [8℄, [13℄. It is possible to obtain quarks and leptonsfrom other manifolds su
h as the 7-sphere and the \squashed" 7-sphere [12℄. The symmetry groupsof these manifolds (SO(8) and SO(5)�SU(2) respe
tively) are, however, not large enough to 
ontainthe standard model, and additional \
omposite" matter �elds [13℄, [91℄ are therefore required.Expli
it higher-dimensional �elds may also be required to in
orporate 
hirality into eleven-dimen-sional 
ompa
ti�ed theory [7℄, [73℄, [77℄ (this is diÆ
ult in an odd number of dimensions). Two others
hemes by whi
h this might be a

omplished are modi�
ations of Riemannian geometry [100℄-[102℄and non
ompa
t internal manifolds [93℄-[99℄. Thus in the D = 11 \
hirality problem" one �nds againa 
hoi
e between sa
ri�
ing either (i) the equation \Matter=Geometry;" (ii) the geometri
al basisof Einstein's theory; or (iii) 
ylindri
ity. Compa
ti�ed theory has in general been 
hara
terized by areadiness to drop (i).We 
on
lude this se
tion by noting that the situation (with regard to non-geometrized matter)does not improve in ten-dimensional 
ompa
ti�ed theory; in fa
t, in many 
ases a six-dimensional19



internal manifold with no isometries is used [8℄, whi
h means that all the matter is e�e
tively putin by hand, marking a 
omplete abandonment of the original Kaluza programme. Besides ensuring
ompa
ti�
ation and making room for fermions, extra terms in the ten-dimensional Lagrangianalso play a role in suppressing anomalies. In the two most popular D = 10 theories, for example(those based on the symmetry groups SO(32) [104℄ and E8 � E8 [105℄), this is a

omplished byChapline-Manton terms [8℄. To the extent that these terms arise naturally in the low-energy limit often-dimensional superstring theory, however, they are less arbitrary than some of the others we havementioned. There is no doubt that superstrings 
urrently o�er, within the 
ontext of 
ompa
ti�edKaluza-Klein theory, the best hope for a uni�ed \theory of everything" [89℄, [108℄. Whether the
ompa
ti�ed approa
h is the best one remains - as we hope to show in the rest of this report - anopen question.5 Proje
tive TheoriesProje
tive theories were designed to emulate the su

esses of Kaluza's �ve-dimensional theory withoutthe epistemologi
al burden of a real �fth dimension. Early models did this too well: like Kaluza's(with no dependen
e on the �fth 
oordinate and no added \higher-dimensional matter" �elds) theygave ba
k ! = 0 Brans-Di
ke theory when the ele
tromagneti
 potentials were swit
hed o�. This
ontradi
ted time-delay measurements like that of the Martian Viking lander [197℄. There were otherproblems as well [16℄. Modern proje
tive theories [15℄-[18℄ attempt to over
ome these short
omingsin at least two di�erent ways.5.1 A Theory of Elementary Parti
lesLessner [15℄ has suggested that, although experiments rule out a ma
ros
opi
 Brans-Di
ke-type s
alar�eld, the theory might still be appli
able on mi
ros
opi
 s
ales, and 
ould be used to des
ribe theinternal stru
ture of elementary parti
les. He begins with the same �ve-dimensional �eld equations(2) (now interpreted as proje
tor equations), and obtains the same four-dimensional �eld equations(6), ex
ept that the 
onstant G is repla
ed by \B," whi
h be
omes essentially a free parameter ofthe theory. A solution (g��, F��, �) of the �eld equations is 
alled a \parti
le" if it satis�es 
ertain
onditions on symmetry, positivity and asymptoti
 behaviour [15℄. Some of the properties of theseparti
les are explored in [123℄-[126℄. The theory is only appli
able to ma
ros
opi
 phenomena when� = 1 and the third of the �eld equations (6) is omitted.5.2 Proje
tive Uni�ed Field TheoryS
hmutzer has taken an alternate approa
h sin
e 1980 in his \proje
tive uni�ed �eld theory" orPUFT [16℄-[18℄ by expli
itly introdu
ing \non-geometrizable matter" (the so-
alled \substrate"). Inordinary Kaluza-Klein theory this would 
orrespond to higher-dimensional matter and be representedin the �ve-dimensional Einstein equations (1) by a nonzero energy-momentum tensor T̂AB; in theproje
tive theory one has instead an energy proje
tor �̂AB:ĜAB = 8�Ĝ�̂AB : (40)There is also a 
onformal res
aling of the four-dimensional metri
, as mentioned earlier:g�� ! g0�� = e��g�� ; (41)20



where � is a new s
alar �eld. Eqs. (40) break down, analogously to the �ve-dimensional ones (2), tothe following set of equations in four dimensions:G�� = 8�G(TEM�� + ��� + ���) ; r�H�� = J� ;�� = 8�G�23#+ 12B��H��� ; (42)where TEM�� is the ele
tromagneti
 energy-momentum tensor as before, and where there are also twonew energy-momentum tensors: the substrate energy tensor ��� = �̂�� and the s
alari
 energy tensor��� de�ned by: ��� = � 316�G������� � 12g���
��
�� : (43)The other terms in eqs. (42) are the ele
tri
 four-
urrent density J�, the ele
tromagneti
 �eldstrength tensor B��, the indu
tion tensor H�� = e3�B�� (the fa
tor e3� a
ts here as a kind of \s
alari
diele
tri
ity"), and one more new quantity, the s
alari
 substrate density:# = e�� �̂AA � 32��� : (44)The 
onservation of energy r̂A�̂AB = 0 implies not only 
onservation of four-
urrent (r�J� = 0)but also 
onservation of substrate energy:r���� = �B��J� + #r�� : (45)The existen
e of substrate and s
alari
 matter in PUFT gives rise to phenomena su
h as \s
alari
polarization" of the va
uum, and violations of the weak equivalen
e prin
iple for time-dependents
alari
 �elds. These 
an be quanti�ed in terms of a \s
alarism parameter" 
, de�ned as the ratioof s
alari
 substrate density to the density � of ordinary matter:
 � #=� : (46)This number be
omes in pra
ti
e the primary free parameter of the theory, showing up in PUFT-based 
osmologi
al models [127℄, [129℄, equivalen
e prin
iple-type experiments [128℄, and Solar Sys-tem tests (perihelion shift, light de
e
tion and time delay) [17℄. Experimental 
onstraints on thetheory take the form of upper limits on the size of 
.In 
omparing these proje
tive theories to the 
ompa
ti�ed Kaluza-Klein theories of the last se
-tion, one 
ould perhaps summarize as follows: Kaluza's uni�ed theory as it stands is an elegant (nohigher-dimensional matter) and minimal extension of general relativity, but su�ers from the defe
tof a very 
ontrived-looking 
ylinder 
ondition. Five-dimensional 
ompa
ti�ed theory, beginning withKlein, repairs this 
aw (and even o�ers the possibility of explaining 
harge quantization) but turnsout to disagree radi
ally with observation. To over
ome this problem within the 
ontext of 
ompa
t-i�ed theory, one has to go to higher dimensions and either introdu
e higher-dimensional matter orhigher-derivative terms to the Einstein a
tion, if one wishes to obtain satisfa
tory 
ompa
ti�
ation.Proje
tive theory o�ers an alternative way to \explain" the 
ylinder 
ondition, and 
an (unlike 
om-pa
ti�ed theory) be formulated in a way that is 
ompatible with experiment using only one extra\dimension." This 
omes at the pri
e, however, not only of modifying the geometri
al foundationof Einstein's theory, but (in S
hmutzer's 
ase) of introdu
ing a \non-geometrizable substrate," or21



(in Lessner's 
ase) of limiting one's ambitions to mi
ros
opi
 phenomena. Overall, the proje
tiveapproa
h does not appear to us to be an improvement over 
ompa
ti�ed theory.6 Non
ompa
ti�ed TheoriesAn alternative is to stay with the idea that the new 
oordinates are physi
al, but to generalizethe 
ompa
ti�ed approa
h by relaxing the 
ylinder 
ondition [19℄-[26℄, instead of restri
ting thetopology and s
ale of the �fth dimension in an attempt to satisfy it exa
tly. This means thatphysi
al quantities, in
luding in parti
ular those derived from the metri
 tensor, will depend onthe �fth 
oordinate. In fa
t it is pre
isely this dependen
e whi
h allows one to obtain not onlyele
tromagneti
 radiation, but matter of a very general kind from geometry via the higher-dimensional�eld equations. The equations of motion, too, are modi�ed by dependen
e on extra 
oordinates. Wereview these fa
ts in the next few se
tions.Of 
ourse, the �fth dimension might also be expe
ted to appear elsewhere in physi
s, and oneof the primary 
hallenges of non
ompa
ti�ed theory is to explain why its e�e
ts have not beennoti
ed so far. Why, for example, have experiments su
h as those mentioned earlier [55℄ been ableto restri
t the size of any extra dimensions to below the attometer s
ale? In non
ompa
ti�ed theory,the answer is that extra 
oordinates are not ne
essarily lengthlike, as these experiments assume.Following Minkowski's example, one 
an imagine 
oordinates of other kinds, s
aled by appropriatedimension-transposing parameters (like 
) to give them units of length. We review this importantissue, and the eviden
e for the hypothesis that a �fth dimension might be physi
ally related to restmass, at the end of x6. For the moment, however, we put o� questions of interpretation and begin bysimply seeing how far Kaluza's �ve-dimensional uni�ed �eld theory 
an be taken when the 
ylinder
ondition is dropped.6.1 The Metri
Without 
ylindri
ity, there is no reason to 
ompa
tify the �fth dimension, so this approa
h is properly
alled \non
ompa
ti�ed." Non
ompa
t extra dimensions have also been 
onsidered in 
ompa
ti�edKaluza-Klein theory by Wetteri
h and others [93℄-[99℄ as a way to bring 
hiral fermions into the theoryand arrange for a vanishing four-dimensional 
osmologi
al 
onstant. These authors, however, retainKlein's me
hanism of harmoni
 expansion, whi
h in turn means that the 
ompa
t manifold musthave �nite volume. In the fully non
ompa
ti�ed approa
h we wish to make no a priori assumptionsabout the nature of the extra-dimensional manifold.We begin with the same �ve-dimensional metri
 (5) as before, but 
hoose 
oordinates su
h thatthe four 
omponents of A� vanish. Sin
e we are no longer imposing 
ylindri
ity on our solutions,this entails no loss of algebrai
 generality; it is analogous to the 
ommon strategy in ele
tromagneti
theory of 
hoosing 
oordinates su
h that either the ele
tri
 or magneti
 �eld vanishes. We also es
hewany 
onformal fa
tor here, preferring to treat the �fth dimension on the same footing as the otherfour. The �ve-dimensional metri
 tensor, then, is:(ĝAB) = � g�� 00 "�2 � ; (47)where we have introdu
ed the fa
tor " in order to allow a timelike, as well as spa
elike signature forthe �fth dimension (we require only that "2 = 1).Timelike extra dimensions are rarely 
onsidered in 
ompa
ti�ed Kaluza-Klein theory, for severalreasons [13℄: (1) they lead to the wrong sign for the Maxwell a
tion in eq. (9) relative to the22



Einstein one; and (2) they lead to the wrong sign for the mass mn of the 
harged modes in eq.(24); ie., to the predi
tion of ta
hyons. The relevan
e of these two arguments to non
ompa
ti�edtheory may be debated. A third 
ommon obje
tion (3) is that additional temporal [13℄ or timelike[7℄, [86℄ dimensions would lead to 
losed timelike 
urves and hen
e allow 
ausality violation. Oneshould be 
areful here to dis
riminate between temporal dimensions, whi
h a
tually have physi
alunits of time; and timelike ones, whi
h merely have timelike signature. If the physi
al nature of the�fth 
oordinate were a
tually temporal, one 
ould 
ertainly imagine problems with 
ausality. One
an, however, transpose units with the proper 
ombination of fundamental 
onstants; 
hanging atemporal one, for instan
e, into a spatial one with 
. With regard to timelike extra dimensions, thesituation is also less 
lear than is sometimes 
laimed. It has even been argued [219℄ that physi
smight be quite 
ompatible with 
losed timelike 
urves. All in all, it is probably prudent to keep anopen mind toward the signature of a physi
al �fth dimension.6.2 The Field EquationsOne now follows the same approa
h as Kaluza, using the same de�nitions (4) of the �ve-dimensionalChristo�el symbols and Ri

i tensor. Now, however, one keeps derivatives with respe
t to the �fth
oordinate x4 rather than assuming that they vanish. The resultant expressions for the ��-, �4- and44-parts of the �ve-dimensional Ri

i tensor R̂AB are [20℄:R̂�� = R�� � r�(���)� + "2�2��4��4g��� � �4g��+g
Æ�4g�
�4g�Æ � g
Æ�4g
Æ�4g��2 � ;R̂�4 = g44g�
4 (�4g�
��g44 � �
g44�4g��) + ��g�
�4g
�2+g�
�4(��g
�)2 � ��g�
�4g�
2 � g�
�4(��g�
)2+g�
gÆ��4g
���gÆ�4 + �4g�
��g�
4 ;R̂44 = �"���� �4g���4g��2 � g���4(�4g��)2+�4�g���4g��2� � g��g
Æ�4g
��4g�Æ4 ; (48)where \�" is de�ned as usual (in four dimensions) by �� � g��r�(���).We assume that there is no \higher-dimensional matter," so the Einstein equations take the form(2), R̂AB = 0. The �rst of eqs. (48) then produ
es the following expression for the four-dimensionalRi

i tensor: R�� = r�(���)� � "2�2��4��4g��� � �4(�4g��)+g
Æ�4g�
�4g�Æ � g
Æ�4g
Æ�4g��2 � : (49)The se
ond 
an be written in the form of a 
onservation law:23



r�P �� = 0 ; (50)where we have de�ned a new four-tensor by:P �� � 12pĝ44 (g�
�4g
� � Æ���4g
�) : (51)And the third of eqs. (48) takes the form of a s
alar wave equation for �:"��� = ��4g���4g��4 � g���4(�4g��)2 + �4�g���4g��2� : (52)Eqs. (49) - (52) form the basis of �ve-dimensional non
ompa
ti�ed Kaluza-Klein theory. It onlyremains to interpret their meaning in four dimensions, and then to apply them to any given physi
alproblem by 
hoosing the appropriate metri
 ĝAB. The rest of x6 is taken up with interpretation;appli
ations to 
osmology and astrophysi
s are the subje
ts of x7 and x8. We 
on
entrate in thisreport on the �ve-dimensional 
ase. The extension to arbitrary dimensions has yet to be investigatedin detail, although some aspe
ts of this have re
ently been dis
ussed by Rippl, Romero & Tavakol[24℄. (These authors also 
onsider non
ompa
ti�ed lower-dimensional gravity, whi
h might be moreeasily quantized than Einstein's theory).6.3 Matter from GeometryThe best-understood of eqs. (49) - (52) is the �rst. It allows us to interpret four-dimensional matteras a manifestation of �ve-dimensional geometry [20℄. One simply requires that the usual Einsteinequations (with matter) hold in four dimensions:8�GT�� = R�� � 12Rg�� ; (53)where T�� is the matter energy-momentum tensor. Contra
ting eq. (49) with the metri
 g�� gives(with the help of eq. (52)) the following expression for the four-dimensional Ri

i s
alar:R = "4�2h�4g���4g�� + �g���4g���2i : (54)Inserting this result, along with eq. (49), into eq. (53), one �nds that:8�GT�� = r�(���)� � "2�2��4��4g��� � �4(�4g��) + g
Æ�4g�
�4g�Æ�g
Æ�4g
Æ�4g��2 + g��4 ��4g
Æ�4g
Æ + (g
Æ�4g
Æ)2�� : (55)Provided we use this expression for T��, the four-dimensional Einstein equations G�� = 8�GT��are automati
ally 
ontained in the �ve-dimensional va
uum ones ĜAB = 0. The matter des
ribed byT�� is a manifestation of pure geometry in the higher-dimensional world. This has been termed the\indu
ed-matter interpretation" of Kaluza-Klein theory, and eq. (55) is said to de�ne the energy-momentum tensor of indu
ed matter. 24



This tensor satis�es the appropriate requirements: it is symmetri
 (the �rst term is a se
ondderivative, while the others are all expli
itly symmetri
), and redu
es to the expe
ted limit when the
ylinder 
ondition is re-applied (ie., when all derivatives �4 with respe
t to the �fth dimension aredropped). In this 
ase, the s
alar wave equation (52) be
omes just the Klein-Gordon equation for amassless s
alar �eld: �� = 0 ; (56)and the 
ontra
ted energy momentum tensor of the indu
ed matter vanishes:T = g��T�� = 0 ; (57)whi
h implies a radiationlike equation of state (p = �=3) for the indu
ed matter, in agreementwith earlier work [220℄ based on the 
ylinder 
ondition. The indu
ed matter in this 
ase 
onsistsof photons, the gauge bosons of ele
tromagnetism - exa
tly the same result obtained by Kaluza.This is the only kind of matter one 
an obtain in the indu
ed-matter interpretation as long as the
ylinder 
ondition is in pla
e. To extend Kaluza's approa
h to other kinds of matter, it is ne
essaryto do one of two things: (1) go to higher dimensions and add an expli
it energy-momentum tensor(or other terms) to the higher-dimensional va
uum �eld equations (
ompa
ti�ed theories in pra
ti
einvolve both these things); or (2) loosen the restri
tion of 
ylindri
ity. In non
ompa
ti�ed theory,whi
h takes the latter 
ourse, it turns out that matter des
ribed by T�� - even in �ve dimensions - isalready general enough to des
ribe many physi
al systems, in
luding in parti
ular those 
onne
tedwith 
osmology and the 
lassi
al tests of general relativity.The interpretation of eqs. (50) and (52) - the �4- and 44- 
omponents of the �ve-dimensional�eld equations (R̂AB = 0) - is not as straightforward as that of eq. (49). The relative simpli
ity ofthe 
onservation equation (50) suggests that there is a deeper physi
al signi�
an
e to the four-tensorP �� , whose fully 
ovariant form is P�� � (�4g�� � g��g
Æ�4g
Æ)=(2pĝ44). It may be related to morefamiliar 
onserved physi
al quantities, or to the Bian
hi identities [20℄.Alternatively, it has been 
onje
tured [177℄ that, as the ��-
omponents of the �eld equations linkgeometry with the ma
ros
opi
 properties of matter, so the �4- and 44-
omponents might des
ribetheir mi
ros
opi
 ones. In parti
ular, if one makes the tentative identi�
ation:P�� = k(mi���� +mgg��) ; (58)where k is a 
onstant, mi andmg are the (suitably de�ned) inertial and gravitational mass of a parti
lein the indu
ed-matter 
uid, and �� � dx�=ds is its four-velo
ity, then the 
onservation equation (50)turns out to be the four-dimensional geodesi
 equation (for one 
lass of metri
s at least). This isinteresting, sin
e equations of motion are usually quite distin
t from the �eld equations. Similarly,using appropriate de�nitions of parti
le mass m, one 
an identify the s
alar wave equation (52) withthe simplest possible relativisti
 quantum wave equation, namely the Klein-Gordon equation:�� = m2� : (59)The relevant expression for parti
le mass turns out to depend expli
itly on the 
omponents ofthe metri
, whi
h means that this variant of non
ompa
ti�ed Kaluza-Klein theory is a realizationof Ma
h's Prin
iple [251℄, [252℄. These are interesting results, but spe
ulative ones, and we donot dis
uss them further here. Some other Ma
hian aspe
ts of non
ompa
ti�ed theories have beenexplored in [25℄, [150℄, [178℄, [179℄, [184℄. 25



6.4 The Spheri
ally-Symmetri
 CaseTo appre
iate what the indu
ed-matter energy-momentum tensor (55) means physi
ally, one has tosupply a �ve-dimensional metri
 ĝAB - preferably one spe
i�
 enough to simplify the mathemati
sbut general enough to be broadly appli
able, eg., to both 
osmologi
al and one-body problems. Webegin here with the general spheri
ally-symmetri
 �ve-dimensional line element:dŝ2 = e�dt2 � e�dr2 �R2(d�2 + sin2�d�2) + "e�d 2 ; (60)where " serves the same fun
tion as before, t, r, � and � have their usual meanings,  is the �fth
oordinate, and �, �, R and � are, for now, arbitrary fun
tions of r, t and  . Denoting derivativeswith respe
t to t by overdots (_), derivatives with respe
t to r by primes (0), and derivatives withrespe
t to  by star supers
ripts (�), one �nds [21℄ that the energy-momentum tensor (55) of indu
edmatter has the following nonzero 
omponents:8�GT 00 = �e��� _� _�4 + _R _�R �+ e���R0�0R � �0�04 + �002 + �024 ��"e������2 + ��24 � ����4 + R���R � R���R + R�2R2 + 2R��R �8�GT 10 = �e��� _�02 + _��04 � � 0 _�4 � _��04 �8�GT 11 = �e��� ��2 + _�24 � _� _�4 + _R _�R �+ e���R0�0R + � 0�04 ��"e���R�2R2 + 2R��R + R���R � R���R + ���2 + ��24 � ����4 �8�GT 22 = �e��� _R _�2R � _� _�4 + _� _�4 + ��2 + _�24 �+ e���R0�02R + �002+�024 � �0�04 + � 0�04 �� "e���R��R + R���2R + R���2R � R���2R+���2 + ��24 + ���2 + ��24 + ����4 � ����4 � ����4 �T 33 = T 22 : (61)If one then assumes that this indu
ed matter takes the form of a perfe
t 
uid:T �� = (� + p)u�u� � pÆ�� ; (62)where u� is the four-velo
ity of the 
uid elements, then the density � and pressure p 
an be readilyidenti�ed [21℄ from the relations � = T 00 + T 11 � T 22 and p = �T 22 . Inserting the expressions (61), oneobtains: 8�G� = 32�e���0R0R � e�� _� _RR �+"e�������4 + 3R���2R � R���2R � R���2R � 2R�2R2 � 3R��R � ;26



8�Gp = 12�e���0R0R � e�� _� _RR �+"e�������4 + R���2R + R���2R + R���2R � R��R � : (63)It is immediately apparent that under the restri
tion of 
ylindri
ity (all starred quantities vanish),one 
an obtain only radiation (p = �=3) from Kaluza's me
hanism, as noted already.With the relaxation of this 
ondition, by 
ontrast, one obtains a very general equation of state.For example, one 
an split the density and pressure into four 
omponents (� = �r + �d + �v + �s andp = pr + pd + pv + ps), where the radiation 
omponent obeys pr = �r=3, the dust-like 
omponentobeys pd = 0, the va
uum 
omponent obeys pv = ��v, and the sti� 
omponent obeys ps = �s. Onethen �nds from eqs. (63) that:�r = 316�G�e���0R0R � e�� _� _RR �+ 3"e��8�G �R���2R � R��R � ;�d = �"e��R�24�GR2 ;�� = �"e��R�16�G ��� + ��� ;�s = "e������32�G : (64)From the �rst of these equations, it follows that in a radiationlike universe whose metri
 
oeÆ
ientsdepend only on time, the �fth dimension must 
ontra
t with time ( _� < 0) if one is to have spatialexpansion ( _R > 0) and positive density (�r > 0). Me
hanisms of this sort have been used in
ompa
ti�ed Kaluza-Klein 
osmology to pump entropy into the four-dimensional universe, solvingthe horizon and 
atness problems [221℄; or indeed to explain why the �fth dimension is 
ompa
t inthe �rst pla
e [222℄ (see x7.1). In the non
ompa
ti�ed approa
h, they no longer have to be assumed apriori, but 
an be seen to be required by the �eld equations. From the se
ond of the above equations,meanwhile, it follows that a dustlike universe must have a spa
elike �fth dimension (" = �1 in our
onvention) in order for its density to be positive (�d > 0). This agrees with the 
ausality argument(x6.1).6.5 The Isotropi
 and Homogeneous CaseOne 
an go farther by making additional assumptions about the metri
. Suppose the line element(60) is rewritten in spatially isotropi
 form:dŝ2 = e�dt2 � e!(dr2 + r2d
2) + "e�d 2 ; (65)where d
2 � d�2+ sin2 �d�2. If one assumes that �, ! and � are separable fun
tions of the variablest, r and  , one 
an obtain spe
ialized solutions to the �eld equations (2) whose properties of matter,as spe
i�ed by the energy-momentum tensor (61), agree very 
losely with those expe
ted from four-dimensional theory.Consider �rst the 
ase of dependen
e on t only. The metri
 (65) is then just a �ve-dimensionalgeneralization of a 
at homogeneous and isotropi
 Friedmann-Robertson-Walker (FRW) 
osmology.But in the 
ontext of non
ompa
ti�ed Kaluza-Klein theory, one ought also to allow dependen
e on the27



extra 
oordinate  . So the general 
at �ve-dimensional 
osmologi
al metri
, assuming separability,should have: e� � T 2(t)X2( ) ; e! � U2(t)Y 2( ) ; e� � V 2(t)Z2( ) : (66)Pon
e de Leon [145℄ was the �rst to investigate solutions of the va
uum Einstein equations (2)with this form. Of his eight solutions, one is of spe
ial interest be
ause it redu
es on hypersurfa
es = 
onstant to the spatially 
at four-dimensional FRW metri
. This solution has " = �1 and:T (t) = 
onstant ; X( ) /  ;U(t) / t1=� ; Y ( ) /  1=(1��) ;V (t) / t ; Z( ) = 
onstant ; (67)and 
an be written in the form:dŝ2 =  2dt2 � t2=� 2=(1��)(dx2 + dy2 + dz2)� �2(1� �)2 t2d 2 ; (68)where dx2+dy2+dz2 = dr2+ r2d
2 are the usual re
tangular 
oordinates, and � is a free parameterof the theory [168℄. Be
ause this solution redu
es on spa
etime se
tions (d = 0) to the familiark = 0 FRW metri
: ds2 = dt2 � R2(t)(dx2 + dy2 + dz2) ; (69)it 
an properly be 
alled the generalization of the 
at FRW 
osmologi
al metri
 to �ve dimensions.Assuming that 
osmologi
al matter behaves like a perfe
t 
uid, one obtains from eqs. (63) thefollowing expressions for density and pressure [167℄:� = 38�G�2 2t2 ; p = �2�3 � 1�� : (70)These are 
onsistent with a wide variety of equations of state: a radiation-dominated universe, forexample, if � = 2; a dust-�lled one if � = 3=2; or an in
ationary one if 0 < � < 1. Physi
al propertiesof 
osmologies based on the metri
 (68) have been explored in [167℄-[171℄, and its impli
ations forthe equations of motion (eg., of galaxies) are known [172℄. Generalizations to k 6= 0 
osmologies[173℄, [174℄ and extended (eg., Gauss-Bonnet) theories of gravity [175℄, [176℄ have been made, anda 
onne
tion to Ma
h's prin
iple [25℄, [177℄-[179℄ has been identi�ed. These and related issues arereviewed in x7.One other of Pon
e de Leon's homogeneous and isotropi
 solutions [145℄ deserves mention. It has:T (t) = 
onstant ; X( ) /  ;U(t) / exp �p�=3t� ; Y ( ) /  ;V (t) = 
onstant ; Z( ) = 
onstant ; (71)and looks like: dŝ2 =  2dt2 �  2e2p�=3t(dx2 + dy2 + dz2)� d 2 : (72)28



This redu
es on spa
etime hypersurfa
es ( = 
onstant) to the de Sitter metri
, and � � 3= 2 is a
osmologi
al 
onstant indu
ed in four-dimensional spa
etime by the existen
e of the �fth 
oordinate . The equation of state of the \matter" indu
ed in four dimensions is that of the 
lassi
al de Sitterva
uum, p = ��, with � = �=(8�G).Billyard & Wesson [171℄ have 
onsidered generalizations of this solution:dŝ2 =  2dt2 �  2ei!t(eik1xdx2 + eik2ydy2 + eik3zdz2) + `2d 2 ; (73)where ! is a frequen
y, ki a wave ve
tor, and ` measures the size of the extra dimension. Theindu
ed-matter equation of state is again p = ��, but now with � = �3!2=(32�G 2). The �eldequations (2) turn out to require `2 = 4=!2 so the va
uum has positive energy density if the �fthdimension is spa
elike. The metri
 
oeÆ
ients of ordinary three-spa
e exhibit wave-like behaviour,but the asso
iated medium is an unperturbed de Sitter va
uum - so this solution des
ribes whatmight be termed \va
uum waves" in Kaluza-Klein theory. (They are not gravitational waves of the
onventional sort be
ause three-spa
e is spheri
ally-symmetri
.) One might apply this to the in
a-tionary universe s
enario; imagining, for example, that ! starts out with real values (
orrespondingto a va
uum-dominated universe with os
illating three-spa
e 
oeÆ
ients) but later takes on imag-inary values (for whi
h the universe enters an expanding de Sitter phase of the usual kind). Onthis interpretation, the big bang o

urs as a (presumably quantum-indu
ed) phase 
hange - as haspreviously been suggested elsewhere on other grounds [223℄, [224℄.6.6 The Stati
 CaseThe metri
 (65) redu
es to another well-known form when the 
oeÆ
ients �, ! and � depend only onthe radial 
oordinate r. This is just a �ve-dimensional generalization of the one-body or S
hwarzs
hildmetri
, and has been variously interpreted in the literature as des
ribing a magneti
 monopole [225℄,\bla
k hole" [227℄, and soliton [226℄ (see x8.1 for dis
ussion). Again, however, from a non
ompa
ti�edpoint of view there is no a priori reason to suppress dependen
e on  , so a general stati
 spheri
ally-symmetri
 metri
, assuming separability, should have:e� � A2(r)D2( ) ; e! � B2(r)E2( ) ; e� � C2(r)F 2( ) : (74)Pon
e de Leon & Wesson [21℄ sear
hed for two-parameter solutions of the �ve-dimensional �eldequations (2) with this form and found only four. (Liu & Wesson [193℄, [194℄ have re
ently obtained athree-parameter generalization of this 
lass). The most useful is the one whi
h 
ontains the ordinaryfour-dimensional S
hwarzs
hild solution as a limiting 
ase. This is the solution with D, E and F
onstant (= 1 without loss of generality), and is thus identi
al to the soliton metri
 just mentioned.The 
oeÆ
ients A, B and C are:A(r) = �ar � 1ar + 1��k ; B(r) = 1a2r2 (ar + 1)�(k�1)+1(ar � 1)�(k�1)�1 ;C(r) = �ar + 1ar � 1�� ; (75)where a is a 
onstant related to the mass of the 
entral body, and � and k are other parameters(in the notation of [227℄). Only one of these is stri
tly a free parameter, as they are related by a
onsisten
y relation: �2(k2 � k + 1) = 1 : (76)29



Written out expli
itly, the metri
 is:dŝ2 = A2(r)dt2 �B2(r)(dr2 + r2d
2)� C2(r)d 2 ; (77)where we have assumed a spa
elike �fth 
oordinate (" = �1) in agreement with other work. In thelimits � ! 0, k ! 1, and �k ! 1 (where a � 2=GM� and M� is the mass of the 
entral body),this metri
 redu
es on spa
etime se
tions d = 0 to the familiar S
hwarzs
hild metri
 (in isotropi

oordinates): ds2 = �1�GM�=2r1 +GM�=2r�2dt2 � �1 + GM�2r �4(dr2 + r2d
2) : (78)It is therefore properly 
alled the generalization of the S
hwarzs
hild metri
 to �ve dimensions.Elsewhere in x6 we will refer to the above values of and k as the \S
hwarzs
hild limit" of the theory.Assuming as usual that the indu
ed matter takes the form of a perfe
t 
uid, eqs. (63) give forboth solutions the following density and pressure [180℄:� = �2ka6r42�G(ar � 1)4(ar + 1)4�ar � 1ar + 1�2�(k�1) ; p = �3 : (79)The soliton metri
 (77) thus des
ribes a 
entral mass surrounded by an inhomogeneous 
loudof radiation-like matter whose density goes as � 1=a2r4 at large values of r. (The S
hwarzs
hildlimit de�ned above is the spe
ial 
ase where the density and pressure of the 
loud are zero; in this
ase p = 0 = �� whi
h is the usual va
uum solution, with its attendant 
lassi
al tests of generalrelativity.) The �2k-term indi
ates that this 
ombination of the two (related) parameters � and kmay 
hara
terize the soliton's energy density [181℄. (This is somewhat di�erent from the traditionalinterpretation, in whi
h these parameters are related to its \s
alar 
harge" [215℄, [228℄.) The equationof state (79) obtained in the indu
ed-matter interpretation di�ers from the one found by Davidson& Owen [227℄, who used an approa
h based on Ka
-Moody symmetries [59℄ and 
on
luded thatp = ��=3. Density shows the same r-dependen
e at large distan
es in both approa
hes, however,and goes to zero in the same S
hwarzs
hild limit. Both solutions are invariant under a ! �a,� ! ��, and require k > 0 for positive density. One 
an de�ne a pressure three-tensor pab in theindu
ed-matter interpretation, using the ab-
omponents of the va
uum �eld equations (2), and thisyields a result [180℄ very similar to the series expression obtained by Davidson & Owen. If one thentakes p � paa=3 (as in [227℄), one gets ba
k exa
tly the result in eq. (79).In Cartesian spatial 
oordinates the pressure tensor in general 
ontains o�-diagonal 
omponents,whi
h implies that the matter making up the soliton is a sum of both a material (perfe
t) 
uid anda free ele
tromagneti
 �eld [180℄. The terms \density" and \pressure" therefore have to be treatedwith 
aution. Solitoni
 matter, in fa
t, is best be des
ribed as a relativisti
 
uid with anisotropi
pressure [181℄. Anisotropi
 spheri
ally-symmetri
 
uids have an energy-momentum tensor given by:T�� = (�+ p?)u�u� + (pk � p?)���� + p?g�� ; (80)where �� is a unit spa
elike ve
tor orthogonal to u�, and pk, p? refer to pressure parallel andperpendi
ular to the radial dire
tion. Assuming that the indu
ed matter (61) takes this form ratherthan that of the perfe
t 
uid (62); and 
hoosing u� = (u0; 0; 0; 0), �� = (0; �1; 0; 0), one �nds:pk = �1� �a2r2 � 2�(k � 1)ar + 1�ar ��� ;30



p? = �a2r2 � 2�(k � 1)ar + 12�ar �� ; (81)with � exa
tly as in eq. (79). These expressions satisfy � = pk + 2p?, 
on�rming that the 
uidhas the nature of radiation. The physi
al properties of solitons based on the metri
 (77) have beenstudied by several authors [180℄-[183℄, [225℄-[228℄. Their impli
ations for astrophysi
s [184℄, [185℄, the
lassi
al tests of general relativity [187℄-[189℄, and the equivalen
e prin
iple [190℄ have been explored,and the 
lass has been extended to time-dependent [191℄, [192℄ and 
harged solutions [193℄, [194℄.These and related issues are reviewed in x8.We mention for 
ompleteness the other three stati
 solutions of the form (74) obtained by Pon
ede Leon & Wesson [21℄. Two of them have A(r), B(r) and C(r) exa
tly as in eqs. (75), but haveF ( ) an arbitrary fun
tion of  , with D�( ) / F ( ) and E( ) = 
onstant in the �rst 
ase, andD( ) / E�1( ) and E�( ) / F ( )=E( ) in the se
ond one. The density and pressure for both thesesolutions is exa
tly as in eqs. (79) above, ex
ept for an added fa
tor of E2( ) in the denominators.This is physi
ally inno
uous in the �rst 
ase (E( ) = 
onstant) but means in the se
ond one thatthese attributes of the radiation 
loud depend on the extra 
oordinate. The  -dependent 
omponentsof the �eld equations pla
e an extra 
onstraint on these both these solutions, restri
ting the allowedvalues of the parameters � and k. The �nal solution is more interesting, and 
an be written in theform: dŝ2 =  2 2 + `dt2 � ( 2 + `)2(ar2 + b) (dr2 + r2d
2) + "d 2 ; (82)where a is related to the mass of the 
entral obje
t as before, b = �"=4a, and ` is one otherindependent 
onstant of the system. Although this solution was found by assuming separability inr and  , it also satis�es the �eld equations (2) when a and b are arbitrary fun
tions of  . Thisis intriguing, as it hints at a relationship between the mass of the 
entral obje
t and the �fth
oordinate. Another interesting feature of the metri
 (82) is its indu
ed-matter equation of state,whi
h - unlike that of the other soliton solutions found so far - is not radiationlike, but turns outto be the one dis
ussed by Davidson & Owen [227℄: p = ��=3. This is an unusual form of matter,but has been 
onsidered previously in several other 
ontexts [229℄-[232℄, largely be
ause it des
ribesmatter that does not disturb other obje
ts gravitationally (gravitational or Tolman-Whittaker massis proportional to 3p + �). Thus it might, for instan
e, be useful in re
on
iling the extremely highenergy densities expe
ted for quantum zero-point �elds with the small value observed for Einstein's
osmologi
al 
onstant [231℄.6.7 General Covarian
e in Higher DimensionsWe have reviewed a number of solutions to the spheri
ally-symmetri
 va
uum �eld equations in�ve dimensions. In ea
h 
ase the �ve-dimensional geometry manifests itself in four dimensions asindu
ed matter, with an asso
iated equation of state. The equation of state, in fa
t, follows from the�eld equations in the indu
ed-matter interpretation of Kaluza-Klein theory, rather than having tobe supplied separately as in four-dimensional general relativity. In several 
ases, the physi
al formof the metri
 on spa
etime hypersurfa
es d = 
onstant, or the equation of state for the indu
edmatter, is su
h as to make the solutions useful for testing the predi
tions of non
ompa
ti�ed theory.The theory is so far not in 
on
i
t with any experimental data (see x7 and x8).However, it is important to keep in mind that physi
al quantities su
h as the s
alars � and p, whi
hare designed to be invariant with respe
t to four-dimensional 
oordinate 
hanges x� ! ~x� 
annotin general stay that way in non
ompa
ti�ed Kaluza-Klein theory, whi
h is invariant with respe
t to31



�ve-dimensional ones xA ! ~xA. Any quantities - even those normally thought of as 
onserved - arevulnerable if they depend on the �fth 
oordinate x4.What this means in pra
ti
e is that density, pressure, and the equation of state in the indu
ed-matter interpretation are to some extent dependent on the 
oordinates in whi
h one 
hooses to expressthem. A sear
h for the 
orre
t solution to a (four-dimensional) physi
al problem is also a sear
h forthe appropriate system of (�ve-dimensional) 
oordinates. This 
an perhaps best be illustrated witha series of simple x4-dependent 
oordinate transformations [23℄, beginning with �ve-dimensionalMinkowski spa
e: dŝ2 = dt2 � dr2 � r2d
2 � d 2 : (83)Spa
etime se
tions of this metri
 are of 
ourse four-dimensional Minkowski spa
es. If one trans-forms to primed 
oordinates:t0 = t ; r0 = r �1 + r2 2��1=2 ;  0 =  �1 + r2 2�1=2 ; (84)this metri
 be
omes: dŝ02 = dt02 �  02� dr021� r02 + r02d
2�� d 02 : (85)Spa
etime se
tions ( 0 = 
onstant) of the new primed metri
 are stati
 Einstein 
osmologies; ie.,four-dimensional FRW metri
s:ds02 = dt02 �R2(t0)� dr021� kr02 + r02d
2� ; (86)with k = +1 and a 
onstant s
ale fa
tor R(t0) =  0 . One 
an obtain from the Friedmann equationsthe value of Einstein's 
osmologi
al 
onstant �, and (assuming a perfe
t 
uid) expressions for thedensity and pressure of matter:� = 1 02 ; �m = 14�G 02 ; �m = 0 : (87)The 
osmologi
al 
onstant represents a va
uum energy density �v = �=(8�G) with asso
iatedpressure pv = ��v. So altogether one has:� = �m + �v = 38�G 02 ; p = �m + �v � �3 : (88)The e�e
tive equation of state in the four-dimensional spa
etime se
tions of the primed metri
(85) is thus that of non-gravitating matter of the kind dis
ussed in x6.6. (The same result 
ouldhave been obtained by plugging the metri
 dire
tly into eqs. (63) for indu
ed-matter density andpressure.) A se
ond 
oordinate transformation to double-primed 
oordinates:t0 =  00 sinh t00 ; r0 = r00 ;  0 =  00 
osh t00 ; (89)puts the metri
 into the new form: 32



dŝ002 =  002dt002 �  002 
osh2 t002� dr0021� r002 + r002d
2�� d 002 : (90)Spa
etime se
tions of this double-primed metri
 are expanding FRW 
osmologies, with k = +1and R(t00) =  00 
osh t00. The density and pressure of the a

ompanying perfe
t 
uid, as obtainedfrom eqs. (63), are: � = 38�G 002 ; p = �� ; (91)so that the e�e
tive equation of state is that of a pure va
uum.Of the metri
s (83), (85) and (90), whi
h one is the best 
hoi
e for a des
ription of the real uni-verse? None, of 
ourse, sin
e none of them admits spa
etime se
tions with realisti
 four-dimensionalproperties. A metri
 whi
h is adequate to this task is the 
osmologi
al one (68). It 
an be obtainedfrom Minkowski spa
e (83) by transforming from t, r,  to ~t, ~r, ~ via:t = �2�1 + ~r2�2�~t1=� ~ 1=(1��) � �2(1� 2�)�~t�1 ~ �=(1��)�(1�2�)=� ;r = ~r~t1=� ~ 1=(1��) ; = �2�1� ~r2�2�~t1=� ~ 1=(1��) + �2(1� 2�)�~t�1 ~ �=(1��)�(1�2�)=� ; (92)and dropping the tildes [25℄. The 
osmologi
al metri
, as we have seen (x6.5), gives ba
k good modelsfor the early (radiation) and late (dust) universe on spa
etime se
tions  = 
onstant if � is 
hosenappropriately.The point of this exer
ise is that all four of the metri
s (68), (83), (85) and (90) are 
at in �vedimensions, although they would be per
eived very di�erently by four-dimensional observers (asevin
ed by their expansion fa
tors and equations of state). The reason for these di�eren
es is the  -dependen
e of the 
oordinate transformations, and the fa
t that the theory is 
ovariant with respe
tto �ve-, not four-dimensional 
oordinates. To properly des
ribe a given four-dimensional problemin non
ompa
ti�ed theory, one needs to 
hoose �ve-dimensional 
oordinates judi
iously. This is nota re
e
tion of some fundamental ambiguity in the theory, but is rather for
ed on us as long as weinsist on retaining four-dimensional 
on
epts like density and pressure in a �ve-dimensional theory(see also x7.6).6.8 Other Exa
t SolutionsSimilar remarks apply to astrophysi
al situations. One has to 
hoose �ve-dimensional 
oordinatesappropriate to ea
h problem, if one wants to 
ou
h the results in terms of familiar four-dimensionalquantities. There is thus a ri
h �eld here for future inquiry. The one-body metri
 whi
h has re
eivedmost attention so far is that of the soliton (77), whi
h 
ontains the four-dimensional S
hwarzs
hildsolution on spa
etime se
tions. As we saw in x6.6, however, the indu
ed matter asso
iated withthis metri
 is ne
essarily radiationlike (ex
ept in the S
hwarzs
hild limit), and its density falls o�with distan
e rather steeply. To des
ribe bodies with di�erent properties, one must �nd new stati
spheri
ally-symmetri
 solutions of the �eld equations. This is possible in Kaluza-Klein theory be
auseBirkho�'s theorem (whi
h guarantees the uniqueness of the S
hwarzs
hild solution in four dimensions)no longer holds in higher dimensions [22℄, [184℄, [214℄, [226℄.33



One su
h solution has re
ently been found by Billyard &Wesson [186℄. It is a
tually a modi�
ationof the 
osmologi
al metri
 (68):dŝ2 = � rr0�2(�+1) 2(�+3)=�dt2 � (3� �2) 2dr2 �  2r2d
2+3(3��2 � 1)r2d 2 ; (93)where r0 is a 
onstant and � is a parameter related to the properties of matter. On spa
etimehypersurfa
es d = 0 this metri
 is very similar to a four-dimensional one originally used to des
ribeinhomogeneous spheres of matter in stati
 isothermal equilibrium [233℄. With the aid of eqs. (63),one �nds that the asso
iated indu
ed matter has:� = (2� �2)8�G(3� �2) 2r2 ; p = ��2 + 2�+ 2=32� �2 �� : (94)In addition, one 
an use the standard (Tolman-Whittaker) de�nition [234℄ of the gravitationalmass of a volume of 
uid to obtain:Mg(r) = (1 + �)Gp3� �2 2+3=�� rr0�2+�r0 : (95)The obje
t des
ribed by this metri
 has positive density for �2 � 2, and positive mass (assuming� 6= 0) for � � �1. So altogether one has a nonzero � between �1 andp2, whi
h allows for equationsof state (94) anywhere in the range ��=3 � p � �. These are potentially relevant to a wide varietyof astrophysi
al problems. But the fa
t that � and p are both proportional to r�2, rather than � r�4as for solitons, indi
ates that eq. (93) may be espe
ially useful for modelling phenomena su
h asgalaxies, or 
lusters of them [235℄-[237℄. To go further one needs to rederive the 
lassi
al tests ofgeneral relativity for this metri
, just as has been done for the soliton one (see x8). Some work hasbeen done in this dire
tion in [186℄.6.9 The Equations of MotionLike the higher-dimensional �eld equations, the higher-dimensional equations of motion are alsomodi�ed when dependen
e is allowed on extra 
oordinates. In this se
tion, in order to expli
itlyin
lude ele
tromagneti
 e�e
ts, we no longer restri
t our 
hoi
e of 
oordinates to those in whi
hA� = 0. The metri
 ĝAB is given by eq. (5), with the addition of the "-fa
tor to allow for timelike,as well as spa
elike x4. We then obtain the equations of motion by minimizing the �ve-dimensionalinterval dŝ2 = ĝABdxAdxB. This results in a �ve-dimensional version of the geodesi
 equation [172℄:d2xAdŝ2 + �̂ABC dxBdŝ dxCdŝ = 0 ; (96)with the �ve-dimensional Christo�el symbol de�ned as in eq. (4). The A = 4 
omponent of eq. (96)
an be shown [172℄ to take the form:dBdŝ = 12 �ĝCD�x4 dxCdŝ dxDdŝ ; (97)where B is a s
alar fun
tion: 34



B � "�2�dx4dŝ + �A�dx�dŝ � : (98)In the 
ase where ĝAB does not depend on x4, B is a 
onstant of the motion (sin
e dB=dŝ = 0),but this is not generally so in non
ompa
ti�ed theory. The de�nition of B, together with the form ofthe metri
 (5), allow us to express the �ve-dimensional interval in terms of the four-dimensional onevia dŝ = (1� "B2=�2)�1=2ds. Using this relation, the A = � 
omponents of eq. (96) 
an be shown[172℄ to take the form:d2x�ds2 + ���� dx�ds dx�ds = Bp1� "B2=�2�F �� dx�ds � �A�B dBds � �g���A��x4 dx4ds �+ "B2(1� "B2=�2)�3�r��+ ��B dBds � d�ds�dx�ds ��g���g���x4 dx�ds dx4ds : (99)This is the fully general equation of motion in Kaluza-Klein theory, and for � = 1; 2; 3 shows howa test parti
le moves in ordinary spa
e.The left-hand side of eq. (99) is identi
al to that in Einstein's theory; the terms on the right-handside are deviations from four-dimensional geodesi
 motion. In the 
ase of no dependen
e on the extra
oordinate x4, the four terms in dB=ds and �=�x4 all vanish and we 
orre
tly re
over the same resultobtained previously by those working in 
ompa
ti�ed Kaluza-Klein theory [238℄-[240℄. The terms inthe �rst set of square bra
kets depend on a nonvanishing ele
tromagneti
 potential A�, and the �rstof these 
an be re
ognized as the Lorentz for
e if the 
harge-to-mass ratio of the test parti
le is:QM = Bp1� "B2=�2 : (100)This relation, however, is only useful in the limit where the metri
 is independent of x4, and itsextra-dimensional part is 
at [172℄. In 
oordinate frames where this is not the 
ase, one 
annotreadily identify quantities like mass or 
harge, whi
h after all are four-dimensional 
on
epts. Thesame 
aution applies to the \s
alar 
harge-to-mass ratio" given by:Q0M = "B2(1� "B2=�2)�3 ; (101)whi
h 
an be identi�ed analogously to the ele
tromagneti
 one from the multipli
ative fa
tor in frontof the se
ond set of square bra
kets in eq. (99).The 0-
omponent of the geodesi
 equation (99), meanwhile, 
an be written [172℄ in a form analo-gous to eq. (97) above: dCds = 12 �ĝCD�x0 dxCds dxDdŝ ; (102)where C is a new s
alar fun
tion:C �s g001� �2�1� "B2�2 � + �BA0 : (103)35



Here �2 = �ab�a�b is the square of the test parti
le's spatial 3-velo
ity �a = dxa=(pg00[dx0 +(g0b=g00)dxb℄), with ��� � g�0g�0=g00 � g�� a suitable proje
tor. If the metri
 ĝAB were independentof time x0 then C would be a 
onstant of motion. Where this is not the 
ase, as in 
osmology, thegeodesi
 equation (99) 
ould in prin
iple be applied to test non
ompa
ti�ed theory. We return tothis question in x7.5. The possible physi
al signi�
an
e of the quantity C is explored in more detailin [172℄.6.10 Physi
al Meaning of the Fifth CoordinateWe have noted that the 
harge of a test parti
le 
an be readily identi�ed in the limit as  � x4 =
onstant. We have also found that a variety of realisti
 four-dimensional 
osmologi
al models andone-body metri
s 
an be identi�ed as 
onstant- hypersurfa
es of 
at �ve-dimensional Minkowskispa
e. So far, then, it appears that useful 
oordinate systems 
an be spe
i�ed by the 
onditionu4 � d =ds = 0. (This is perfe
tly legitimate from a mathemati
al point of view as the introdu
tionof a �fth 
oordinate into general relativity means an extra degree of freedom that 
an always beused if one wishes to set a 
ondition on u4.) However, we have not mu
h improved on Kaluza's
ylinder 
ondition unless we 
onfront the question: are there any physi
al reasons why we shouldexpe
t d =ds = 0?In answering this one is obliged to interpret  physi
ally. We review here one su
h interpretation,whi
h has been advan
ed by Wesson and his 
ollaborators [23℄, [25℄, [135℄, [168℄. Non
ompa
ti�edtheory in general (and elsewhere in this report, in
luding the next two parts on experimental 
on-straints) stands or falls quite independently of this additional work. The proposal we 
onsider is thatthe �fth 
oordinate  might be related to rest mass. The 
oordinate frame pi
ked out by u4 = 0 isthen just the one in whi
h parti
le rest masses are 
onstant. There are at least three independentpie
es of eviden
e (besides the empiri
al fa
t that rest masses are 
onserved!) in support of this
onje
ture: (1) All of me
hani
s depends on base units of length, time and mass. So if the formertwo 
an be treated as 
oordinates, then maybe the last should also. Dimensionally, x4 = Gm=
2allows us to treat the rest mass m of a parti
le as a length 
oordinate, in analogy with x0 = 
t. (2)Metri
s whi
h do not depend on x4, like the soliton metri
 (77), 
an give rise only to indu
ed matter
omposed of photons; while those whi
h depend on x4, like the 
osmologi
al metri
 (68), give ba
kequations of state for 
uids 
omposed of massive parti
les. (3) The metri
s dŝ2 = dT 2 � d�2 � d	2and dŝ2 =  2dt2�d�2�t2d 2 are related by the 
oordinate transformations T = t2 2=4+ln[(t= )1=2℄and 	 = t2 2=4 � ln[(t= )1=2℄. The former metri
 is 
at, while the latter gives an a
tion prin
ipleÆ R dt = 0 for parti
les at rest in ordinary spa
e (d�=ds = 0), viewed on hypersurfa
es  = 
onstant.This a
tion prin
iple is formally the same as that of parti
le physi
s if  ! m in the lo
al, low-velo
ity limit. (The same argument applies to 
osmologi
al metri
s (68).) This view of the origin ofmass is similar to that in some quantum �eld theories [241℄, where rest masses are generated spon-taneously in a 
onformally invariant theory that in
ludes a s
alar dilaton �eld or Nambu-Goldstoneboson in Minkowski spa
e.Several other, more philosophi
al reasons [23℄, [25℄ to 
onsider the STM (\Spa
e-Time-Matter")hypothesis that  might be related to m 
an perhaps be mentioned here: (4) A theory in whi
hmass is pla
ed on the same footing as spa
e and time will be naturally s
ale-invariant, simply byvirtue of being 
oordinate-invariant (be
ause parti
le masses are a ne
essary part of any system ofunits, or \s
ales"). The idea that nature might be s
ale-invariant has been 
onsidered from time totime by su
h eminent thinkers as Dira
, Hoyle and others [23℄, [242℄-[250℄. (The STM approa
h is,however, otherwise quite distin
t from these theories, not least in the fa
t that it predi
ts a variationin rest mass m rather than the dimension-transposing 
onstant G.) (5) There is also a pleasingsymmetry in the elevation of G to the same status as 
: as the latter puts distan
es into temporalunits, so the former is needed to do the same for masses. The a
tual 
onversion fa
tors are 1=
 andG=
3 respe
tively, and this helps explain why any 
hange in mass with time - a generi
 feature of36



s
ale-invariant theories - has been so small as to have es
aped dete
tion so far: the latter fa
toris some 43 orders of magnitude smaller than the former, and the former is already tiny enough tohave made spe
ial relativisti
 e�e
ts unnoti
eable until the se
ond half of this 
entury. (6) Finally,we note that if x4 is not restri
ted to be lengthlike (or timelike) in nature, then the extra partof the metri
 
an have either sign without running afoul of 
losed timelike 
urves and 
ausalityproblems (x6.1). We will not 
onsider the STM theory further in this report, noting however that itsobservational impli
ations have been studied over the years by Wesson [19℄, [136℄-[139℄ and numerousothers [140℄-[148℄, [149℄-[158℄, [159℄-[163℄.7 Cosmology7.1 Compa
ti�ed Kaluza-Klein CosmologyCosmologi
al aspe
ts of 
ompa
ti�ed Kaluza-Klein theory have re
eived less attention than thoserelated to parti
le physi
s [12℄. Where they have been addressed [7℄, [13℄, mu
h of the dis
ussionhas fo
used on the sear
h for exa
t solutions of higher-dimensional general relativity (or extendedgravity theories) whi
h 
ontain the familiar FRW universes on spa
etime-like se
tions. This was �rstdone in �ve dimensions (with no extra-dimensional matter) by Chodos & Detweiler [222℄ in 1980,and extended to ten- and eleven-dimensional supergravities (with appropriate higher-dimensionalmatter tensors) by Freund [253℄. The key feature of these and subsequent models [254℄-[260℄, [261℄-[267℄ was that extra dimensions 
ould (and in some 
ases ne
essarily would) shrink as the spatialones expanded, thus lending support to the whole notion of 
ompa
ti�
ation. (The possibility that
ompa
t subspa
es 
ould \boun
e ba
k" from a 
ontra
ting phase was also investigated [268℄, [269℄.)This approa
h to explaining why the universe appears four-dimensional is sometimes referred to as\dynami
al" or \
osmologi
al" dimensional redu
tion. Non-
ompa
ti�ed theory 
an exhibit the samebehaviour, as noted in x6.4 and x8.10.In more than �ve dimensions, 
ompa
ti�
ation requires either expli
it matter terms or modi�
a-tions to the Einstein equations (x4.4). All kinds of matter have been invoked to indu
e 
osmologi
al
ompa
ti�
ation (usually in addition to that already required for spontaneous 
ompa
ti�
ation; eg.,as in supergravity [253℄, [256℄-[258℄). There are theories with dilaton �elds [258℄, quantized �ve-dimensional s
alar �elds [259℄, a D-dimensional gas of non-intera
ting s
alar parti
les [260℄, generalhigher-dimensional perfe
t 
uids [256℄, [261℄-[264℄, D-dimensional radiation [265℄, �ve-dimensionaldust [266℄, and s
alar �elds in nonlinear sigma models [267℄. Cosmologi
al 
ompa
ti�
ation me
ha-nisms based on modi�
ations of Einstein's theory of gravity are just as 
olorful, employing quadrati
[270℄, [271℄, 
ubi
 [272℄, and even quarti
 terms [273℄ in the 
urvature, both generally and in spe-
ial 
ombinations known variously as Gauss-Bonnet terms [255℄, [265℄, [274℄, [275℄, Lan
zos terms[276℄, Lovelo
k terms [273℄, [277℄, Euler-Poin
ar�e densities [278℄, and dimensionally 
ontinued Eulerforms [279℄, [280℄. Even 
hanges of metri
 signature [281℄ have been 
onsidered as instruments of
ompa
ti�
ation. An exhaustive survey and 
lassi�
ation of generalized higher-dimensional va
uum
osmologies has re
ently been 
arried out by Coley [175℄.An important step in Kaluza-Klein 
osmology was the demonstration that shrinking extra dimen-sions 
ould transfer entropy into the four-dimensional universe, providing a new way to solve thehorizon and 
atness problems [221℄, [282℄, although many (� 40) extra dimensions were required[283℄. In
ation itself has also been in
orporated dire
tly in 
ompa
ti�ed Kaluza-Klein theories [284℄,[285℄, and indeed \Kaluza-Klein in
ation" has burgeoned into a sub-�eld of its own [286℄. It is diÆ
ultto obtain in some supergravity [256℄ and most superstring [287℄ theories, and again requires in generalthat either additional matter terms [284℄ or higher-derivative 
orre
tions [285℄ be added to Einstein'stheory. Examples of the former in
lude higher-dimensional dust [288℄, s
alar �elds with 
onformaltransformations of the metri
 [64℄, [289℄ or non-minimal 
ouplings to the 
urvature [290℄, generalized37



perfe
t 
uids [291℄, [292℄, and others [293℄. Examples of the latter in
lude higher-derivative 
orre
-tions to Einstein's equations [294℄, [295℄, Gauss-Bonnet terms [274℄, [281℄, and Euler forms [280℄.In
ation has also been obtained with multiple 
ompa
t subspa
es [296℄ and expli
it \
haoti
 in
a-ton" �elds [297℄. Other in
ationary Kaluza-Klein 
osmologies in
lude versions of extended in
ation[298℄ and STM theory [147℄. An ex
iting re
ent development is the use of COBE measurements ofmi
rowave ba
kground anisotropy to put experimental limits - surprisingly restri
tive ones in some
ases - on in
ationary Kaluza-Klein models [299℄-[302℄.Cosmologi
al 
onstraints on 
ompa
ti�ed Kaluza-Klein theories apart from those relating to in-
ation in the early universe have also re
eived attention, beginning with Mar
iano's observation[303℄ that time-variation in the s
ale of extra dimensions would have important 
onsequen
es forthe fundamental 
onstants of four-dimensional physi
s. Impli
ations of the same phenomenon forprimordial nu
leosynthesis [304℄ and nu
lear resonan
e levels in 
arbon and oxygen atoms [305℄ havealso been dis
ussed. If the extra dimensions are spatial in nature, these arguments imply that thepresent rate of 
hange in their mean radius is less than about 10�19yr�1. Another interesting idea isto use observations of gravitational waves to 
onstrain Kaluza-Klein 
osmologies; this however turnsout to be impra
ti
al at the present time [306℄. Other issues in 
ompa
ti�ed Kaluza-Klein 
osmologyin
lude the possibility of ex
essive 
ontributions to the global energy density from massive Fouriermodes [13℄, [307℄ and solitons [13℄, [308℄ (see also x8.4), gravitational e�e
ts due to massless s
alar
omponents of the 
ompa
ti�ed higher-dimensional metri
 [309℄, and the stability of solutions withrespe
t to 
lassi
al perturbations [310℄, 
haoti
 behaviour [311℄, and quantum e�e
ts [212℄, [268℄,[312℄. Inhomogeneous Kaluza-Klein 
osmologies have been 
onsidered in [313℄.7.2 The Equation of StateCompa
ti�ed Kaluza-Klein 
osmology, as des
ribed above, is 
hara
terized by a profusion of 
ompet-ing expressions for the energy-momentum tensor T̂AB in higher dimensions, re
e
ting the fa
t thatthere is no 
onsensus on how to de�ne \higher-dimensional matter." In non
ompa
ti�ed 
osmology,by 
ontrast, one avoids this ambiguity with the natural and e
onomi
al assumption that T̂AB � 0;that is, that the universe in higher dimensions is empty.This 
annot be done in 
ompa
ti�ed theory be
ause the 
ylinder 
ondition imposes un
omfortablerestri
tions on the resulting equation of state (and other properties of matter) in four dimensions.Consider as a simple example the uniform �ve-dimensional line element (65) with � = 0, ! = ln t,and � = � ln t: dŝ2 = dt2 � td�2 � t�1d 2 ; (104)where d�2 = dx2 + dy2 + dz2 is shorthand for the spatial part of the metri
. This would be ana

eptable solution in 
ompa
ti�ed 
osmology in that its 
onstant- se
tions are FRW, none of themetri
 
oeÆ
ients depend on  , and the extra 
oordinate shrinks with time. Indeed its spatial partgrows in exa
tly the same way as that of a four-dimensional FRW model with the radiation equationof state, p = �=3. And in fa
t, in the indu
ed-matter interpretation, this metri
 literally does des
riberadiation. That is, putting eq. (104) into the �ve-dimensional va
uum �eld equations ĜAB = 0 givesba
k the four-dimensional ones G�� = 8�T��, where T�� is the energy-momentum tensor of a perfe
t
uid with: � = 332�t2 ; p = �3 ; (105)as 
an be shown expli
itly using eqs. (63). (Units are su
h that G = 
 = 1 throughout x7, ex
eptwhere otherwise noted.) These are the same expressions as those used to des
ribe the radiation era38



in (
at) four-dimensional 
osmology [168℄. In fa
t, unless �ve-dimensional matter is put in to beginwith, this metri
 is in
apable of manifesting itself as anything but ele
tromagneti
 radiation in fourdimensions (x6.3).In non
ompa
ti�ed 
osmology, by 
ontrast, one 
an des
ribe the universe at any stage of its historywithout higher-dimensional matter (or modi�
ations to the higher-dimensional �eld equations). Asdis
ussed in x6.5, the best metri
 for this purpose is the \
osmologi
al metri
" (68). Consider �rstthe 
ase � = 2, whi
h looks like:dŝ2 =  2dt2 � t �2d�2 � 4t2d 2 : (106)This line element again has FRW-like 
onstant- se
tions, and gives exa
tly the same expressionsfor indu
ed density and pressure as eqs. (105) above, provided that the unphysi
al 
oordinate label tis repla
ed by the proper time  t. So it again des
ribes a radiation-dominated universe, or one �lledwith relativisti
 parti
les su
h as neutrinos. This time, however, the metri
 
oeÆ
ients depend on , and the �fth dimension grows with time. Solutions of this type tend to be dis
arded in parti
lephysi
s, where the assumed lengthlike nature of the extra 
oordinates 
onstrains them to be verysmall at the present time [55℄. Here we make no a priori assumptions about the physi
al nature ofextra dimensions. This allows us to obtain more general kinds of 
osmologi
al matter [167℄, [168℄.In the 
ase � = 3=2, for instan
e, the same metri
 (68) reads:dŝ2 =  2dt2 � t4=3 �4d�2 � 9t2d 2 ; (107)whi
h, from eqs. (70), represents matter with indu
ed density and pressure:� = 16�( t)2 ; p = 0 ; (108)and therefore des
ribes a dust-�lled universe. One 
an also model in
ation (in 
at FRW models) by
hoosing 0 < � < 1. Provided one is willing to tolerate a dependen
e on the extra 
oordinate, then,and a non-lengthlike interpretation of its physi
al nature, one 
an des
ribe the universe at any stageof its history as a manifestation of pure geometry in �ve dimensions. In every 
ase, the parameters� and p appear as produ
ts of an underlying geometri
 theory, and the equation of state manifestsitself as a 
onsequen
e of the �eld equations. This is more satisfying than the usual situation in(four-dimensional) 
osmology, where pressure and density have merely phenomenologi
al status andthe equation of state must be put into the theory by hand.7.3 Extension to k 6= 0 CosmologiesThe 
osmologi
al metri
 (68), and the others mentioned in x6.5, are all �ve-dimensional generaliza-tions of spatially 
at four-dimensional FRW spa
etimes. One 
ould also 
onsider a 
urved version ofthe homogeneous and isotropi
 line element (65):dŝ2 = e�dt2 � e!� dr21� kr2 + r2d
2�� e�d 2 : (109)M
Manus [174℄ has investigated solutions of the va
uum Einstein equations (2) with this form.Like Pon
e de Leon [145℄, he assumed that �, ! and � were separable fun
tions, as given by eq.(66), with T (t) = Z( ) = 
onstant. He found four solutions with k 6= 0, ea
h asso
iated with awell-de�ned indu
ed-matter equation of state. We list his �nal results here. In the �rst solution,X( ) and Y ( ) are 
onstant as well as Z( ), and the line element reads:39



dŝ2 = dt2 � (�kt2 + �t+ �)d�2 � (kt� �=2)2�kt2 + �t+ �d 2 ; (110)where d�2 = [(1� kr2)�1dr2 + r2d
2℄ is new shorthand for the spatial part of the metri
 and � and� are arbitrary 
onstants. Sin
e none of the metri
 
oeÆ
ients depend on  , the equation of state isthat of radiation: � = 3(�2 + 4k�)32�(�kt2 + �t+ �)2 ; p = �3 : (111)This solution was originally dis
ussed by Davidson et al. [254℄. The se
ond solution reads:dŝ2 = (k + �=2)2k 2 + � + �dt2 � (k 2 + � + �)d�2 � d 2 ; (112)and has: � = 3k8�(k 2 + � + �) ; p = ��3 : (113)This is the equation of state of \nongravitating matter" dis
ussed in x6.6. The same equation ofstate 
hara
terizes the third solution:dŝ2 = dt2 � 14t2(e � ke� )2d�2 � t2d 2 ; (114)whi
h has: � = 38�t2 1(tanh )2k : (115)Finally, M
Manus' fourth solution is given by:dŝ2 =  2dt2 � 14 2(et + ke�t)2d�2 � d 2 ; (116)with: � = 38� 2 ; p = �� : (117)This is the equation of state of a va
uum.Liu & Wesson [173℄ have extended the sear
h to non-separable k 6= 0 solutions (109). Instead ofeq. (66), they assume metri
 
oeÆ
ients of the form:e� � L2(t� � ) ; e! � M2(t� � ) ; e� � N2(t� � ) ; (118)where L, M and N are wavelike fun
tions of the argument (t � � ), with � a
ting as a \wavenumber." Their solutions turn out to be determined by two relations:
40



_L2 + kM2 = �2M2��2M2 �L2� ;N2 = �2M2 � k�2 + �L2 ; (119)where L (orM) must be supplied, and � and � are integration 
onstants. With L,M and N spe
i�edin this way, the indu
ed-matter energy-momentum tensor 
an be 
al
ulated, and the density andpressure of the 
osmologi
al indu
ed matter found. If one supposes, for example, that � = 0 andM = L(3
+1)=2, with 
 a new 
onstant, then one obtains a perfe
t 
uid with:� = 3�2�28�L3+3
 ; p = 
� : (120)In this 
ase the metri
 (109) reads:dŝ2 = 1L1+3
 dt2 � L2�2 � � �2L1+3
 � k�2�d 2 ; (121)where L(t� � ) plays the role of the 
osmologi
al s
ale fa
tor, obeying the �eld equation:_L2 + kL1+3
 = �2�2L2+6
 : (122)This solution 
an be used to des
ribe, for example, the matter-dominated era (
 = 0) or theradiation-dominated one (
 = 1=3). The properties of this model are dis
ussed in more detail in[173℄. The fa
t that the s
ale fa
tor depends on  as well as t is parti
ularly interesting, and impliesthat observers with di�erent values of  would disagree on the time elapsed sin
e the big bang;that is, on the age of the universe. Rather than being a single event, in fa
t, the big bang in thispi
ture resembles a sort of sho
k wave propagating along the �fth dimension. This e�e
t 
ould inprin
iple allow one to 
onstrain the theory using observational data on the age spread of obje
ts su
has globular 
lusters [315℄-[317℄. This has yet to be investigated in detail.7.4 Newton's Law, the Continuity Equation, and Horizon SizeBesides the equation of state, there are two other important laws relating � and p in 
osmology; andit is natural to ask whether or not they are automati
ally satis�ed by the indu
ed-matter 
uid. Theseare the 
ontinuity (or mass 
onservation) equation, or equivalently the �rst law of thermodynami
sdE + pdV = 0 (where E is energy and V is the three-dimensional volume); and the equation ofmotion (or geodesi
 equation). The former 
an be written:��T (�R3) + p ��T (R3) = 0 : (123)The latter is in general quite 
ompli
ated (see x6.9), and we defer dis
ussion of the non
omoving
ase to the next se
tion. For matter whi
h is 
omoving with a uniform 
uid, however, only the radialdire
tion is of interest and the equation of motion is just Newton's law:�2R�T 2 = �MR2 ; M � 43�R3(� + 3p) ; (124)41



where we have used gravitational, rather than inertial mass, as pressure 
an be signi�
ant in 
osmo-logi
al problems [314℄. In these equations one must be 
areful to use proper time T = R e�=2dt anddistan
e R = R e!=2dr rather than the \raw 
oordinates" t and r (where r2 = x2+y2+z2 is 
omovingradial distan
e). For the 
osmologi
al metri
 (68) one has just T =  t and R = t1=� 1=(1��)r, andit is straightforward to show, using eqs. (70) for � and p, that the 
onservation equation (123) andequation of motion (124) are both satis�ed [167℄. In fa
t, the same thing is true for any spatially-
atperfe
t-
uid 
osmology indu
ed in this way by �ve-dimensional geometry [168℄. As far as Newton'slaw and the 
ontinuity equation are 
on
erned, then, non
ompa
ti�ed Kaluza-Klein 
osmology isindistinguishable from standard 
osmology. To the extent that these laws depend on the �eld equa-tions, this is not surprising, sin
e the �ve-dimensional �eld equations Ĝ�� = 0 
ontain exa
tly thesame information as the usual four-dimensional ones G�� = 8�T��.There are, however, e�e
ts whi
h depend on the metri
 but not the �eld equations, and thenon
ompa
ti�ed versions of these will in general show departures from standard 
osmology. The sizeof the parti
le horizon, for example, 
an be 
omputed dire
tly from the line element (assuming a nullgeodesi
, dŝ2 = 0). For the above \dust-like" metri
 (107), it reads:d = t2=30 Z t00 � 20 � 9t2�d dt �2�1=2 dtt2=3 : (125)This is just the usual (four-dimensional) expression, plus a term in (d =dt). (This term ne
essarilya
ts to redu
e the size of the parti
le horizon be
ause the extra dimension of the 
osmologi
al metri
(68) is spa
elike.) Similar results are found for the \radiation" metri
s (106) and (104) above [168℄.The value of the derivative (d =dt) 
an be evaluated with the help of the full geodesi
 equation, towhi
h we turn next.7.5 The Equation of MotionThe general equation of motion, or geodesi
 equation (99), is also a metri
-based relation and will
ontain nonstandard terms if the �fth dimension is real. Sin
e the 
osmologi
al 
uid is neutral, wedisregard ele
tromagneti
 terms. The spatial 
omponents (� = i, with i = 1; 2; 3) of eq. (99) thenread: d2xids2 + �i�� dx�ds dx�ds = "B2(1� "B2=�2)�3�ri�+ ��B dBds � d�ds�dxids ��gi��g���x4 dx�ds dx4dx ; (126)where B is as given in eq. (98). We then de�ne a �ve-velo
ity �̂A � dxA=dŝ, whi
h is related tothe usual four-velo
ity �� � dx�=ds by �� = (dŝ=ds)�̂�. Using the 
osmologi
al metri
 (68), one
an show that, for obje
ts whi
h are 
omoving with the 
osmologi
al 
uid (�̂i = 0), all terms onthe right-hand side of eq. (126) vanish [172℄. Comoving obje
ts, in other words, satisfy the spatial
omponents of the �ve-dimensional geodesi
 equation in exa
tly the same way as in the standardfour-dimensional theory. This e
hoes the result obtained above for Newton's law.For non
omoving obje
ts, however, the right-hand side of eq. (126) will in general 
ontain nonzeroterms involving the spatial velo
ities, the extra part of the metri
, and derivatives of the metri

oeÆ
ients with respe
t to the extra 
oordinate. From the viewpoint of four-dimensional generalrelativity su
h terms would appear as violations of the weak equivalen
e prin
iple or manifestationsof a \�fth for
e" [188℄, [214℄, [226℄. To put this in pra
ti
al terms, eq. (126) tells us that galaxies with42



large pe
uliar velo
ities will not ne
essarily travel along four-dimensional geodesi
s. Observationsof the pe
uliar motions of galaxies (and groups and 
lusters of them) are now be
oming available[318℄-[323℄, and in prin
iple these 
an be used to dis
riminate between non
ompa
ti�ed Kaluza-Kleintheory and ordinary general relativity [172℄, although this has yet to be investigated in detail. Similar
onsiderations will apply to the dynami
s of 
harged test parti
les su
h as 
osmi
 rays, for whi
h theele
tromagneti
 terms in eq. (99) would need to be in
luded.We turn next to the 0- and 4-
omponents of the geodesi
 equation (99). With 
omoving spatial
oordinates (�̂i = 0) one �nds, using the metri
 (68):d�̂0dŝ + 2 �̂0�̂4 + �2(1� �)2 t 2 �̂4�̂4 = 0 ;d�̂4dŝ + (1� �)2�2  t2 �̂0�̂0 + 2t �̂0�̂4 = 0 : (127)A solution of these must be 
ompatible with the metri
 itself, whi
h imposes the 
ondition: 2�̂0�̂0 � �2(1� �)2 t2�̂4�̂4 = 1 : (128)From eqs. (127) and (128) the 0- and 4-
omponents of the �ve-velo
ity are found [170℄ to be:�̂0 = � �p2�� 1 1 ; �̂4 = � (1� �)2�p2�� 1 1t : (129)The ratio of these gives us the rate of 
hange with time of the extra 
oordinate (d =dt = �̂4=�̂0),and this is easily integrated to yield:  (t) = � t0t �A ; (130)where t0 is an integration 
onstant and A � (1� �)2=�2. For � = 2 (the radiation-dominated era),A = 0:25; while for � = 3=2 (the matter-dominated era), A � 0:11. The relative rate of 
hange ofthe extra 
oordinate is: d =dt = �At ; (131)and this is 
omfortably small in either 
ase at late times. (This is also true in the STM interpretation,where  is related to rest mass; we return to this in the next se
tion.) The small size of d =dt meansthat the horizon sizes dis
ussed in the last se
tion will be 
lose to those in standard 
osmology. Thedis
repan
ies are, however, ne
essarily nonzero if the spatial 
oordinates are 
hosen to be 
omoving.7.6 Cosmologi
al Impli
ations of General Covarian
eIn the previous se
tion we worked entirely in 
oordinates de�ned by the 
osmologi
al metri
 (68).We are of 
ourse free to transform to 
oordinates in whi
h the spatial 
omponents of the �ve-velo
ityare not 
omoving. For example, we 
an swit
h from t, r,  to t0, r0 and  0, where:t0 = t ; r0 = t1=�r ;  0 = At�A : (132)43



In terms of these new 
oordinates, the density and pressure of the 
osmologi
al 
uid are no longergiven by eqs. (70) but by: � = 38��2t02 ; p = �2�3 � 1�� : (133)These are identi
al to the expressions in standard early (� = 2) and late (� = 3=2) 
osmology.Also, sin
e the metri
 transforms as a tensor, ĝ0AB = (�x0A=�xC)(�x0B=�xD)ĝCD, we have the resultthat ĝ000 = (2� � 1)=�2 = 
onstant, whi
h implies that in the new 
oordinates (132) there is auniversal or 
osmi
 time. Similarly, using the ve
tor transformation law �̂0A = (�x0A=�xB)�̂B, we�nd that the new 
omponents of the �ve-velo
ity are:�̂00 = �p2�� 1� ; �̂01 = � 1p2�� 1 r0t0 ; �̂02 = �̂03 = �̂04 = 0 : (134)The 0-
omponent of the test parti
le velo
ity (whi
h in four-dimensional theory is related to itsenergy) is 
onstant. The �rst 
omponent is proportional to r0, whi
h represents a version of Hubble'slaw. And the fourth 
omponent vanishes. Taken together, the above observations tell us that thenew 
oordinates de�ned by eq. (132) - the ones in whi
h �̂4 = d =dŝ = 0 - are just the ones whi
hgive ba
k standard 
osmology. In a fully 
ovariant �ve-dimensional theory, there 
an be no a priorireason to prefer 
oordinates in whi
h �̂4 = 0 over those in whi
h �̂4 6= 0. It is a matter for experimentto de
ide. As emphasized in x6.7, the 
hoi
e between the 
oordinates de�ned by the metri
 (68) andthose de�ned by (132) is not arbitrary - not as long as the laws of physi
s are written in terms offour-dimensional 
on
epts like density, pressure, and 
omoving four-velo
ity [23℄, [170℄. To de
idewhether or not the 
oordinates of the last se
tion are appropriate to des
ribe the \real world," onemust look for the e�e
ts asso
iated with them, like the nongeodesi
 motion of galaxies with largepe
uliar velo
ities.Another promising possibility arises if one 
an interpret the �fth dimension physi
ally, sin
e eq.(131) shows expli
itly how it will 
hange with time. In parti
ular, in the 
ontext of STM theory,where  is related to parti
le rest mass, this equation implies a slow variation in rest mass with time:_mm = �At : (135)Putting A � 0:11 for the matter-dominated era and t � 15 � 109 yr for the present epo
h, weobtain a value of _m=m = �7� 10�12yr�1. This is marginally 
onsistent with ranging data from theViking spa
e probe to Mars, where errors are reported as �4 � 10�12yr�1, and �10 � 10�12yr�1;and quite 
onsistent with timing data for the binary pulsar 1913+16, where errors are reported as�11 � 10�12yr�1 [170℄, [197℄. If the STM hypothesis is valid, these data tell us that observation is
lose to settling the question of whether 
osmology is using 
oordinates with �̂4 = 0 or ones with�̂4 6= 0.It may seem unusual that physi
al e�e
ts 
an depend on the referen
e frame in whi
h one observesthem. In fully 
ovariant Kaluza-Klein theory this is a ne
essary 
onsequen
e of trying to measure ahigher-dimensional universe with four-dimensional tools. Perhaps the most graphi
 example of thisis the big bang itself. As demonstrated in x6.7, the 
osmologi
al metri
 (68) is �ve-dimensionally
at. The universe may therefore be far simpler than previously suspe
ted, in that it may have zero
urvature. What then of the big bang singularity, the Hubble expansion, the mi
rowave ba
kground,and primordial nu
leosynthesis? In non
ompa
ti�ed Kaluza-Klein 
osmology, these phenomena,whi
h are all de�ned in four-dimensional terms, are in a sense re
ognized as geometri
al illusions -artifa
ts of a 
hoi
e of 
oordinates in the higher-dimensional world [169℄. Something like this o

urseven in four-dimensional general relativity when one works with 
omoving spatial 
oordinates, in44



whi
h galaxies remain forever apart and there is no initial singularity [170℄. Relativity is founded onthe idea that there should be no preferred 
oordinate systems; yet in spatially 
omoving frames thereis no big bang. This paradox has no resolution within Einstein's theory, whi
h must 
onsequentlybe seen as in
omplete. In pra
ti
e, one usually regards the 
omoving 
oordinates as useful but \notreal." Non
ompa
ti�ed Kaluza-Klein theory gives us a new way to think about these issues in termsof general 
ovarian
e in higher dimensions.8 Astrophysi
s8.1 Kaluza-Klein SolitonsTo model astrophysi
al phenomena like the Sun or other stars in Kaluza-Klein theory, one mustextend the spheri
ally-symmetri
 S
hwarzs
hild solution of general relativity to higher dimensions.Birkho�'s theorem guarantees that the four-dimensional S
hwarzs
hild metri
 is both stati
 andunique to within its single free parameter (the mass of the 
entral obje
t). This theorem, however,does not hold in higher dimensions, where solutions that are spheri
ally-symmetri
 (in three or morespatial dimensions) depend in general on a number of parameters (su
h as ele
tri
 and s
alar 
harge)besides mass, and 
an in some 
ases be time-dependent as well. Unlike four-dimensional stationarysolutions, some 
an also be nonsingular [226℄, [324℄, [325℄. Su
h lo
alized solutions of �nite energy
an legitimately be 
alled \solitons" in the same broad sense used elsewhere in physi
s [326℄. In fa
t,some workers [180℄, [182℄, [185℄, [191℄, [192℄ have found it 
onvenient to apply this term to the entire
lass of higher-dimensional generalizations of the S
hwarzs
hild metri
 with �nite energy (in
ludingthose whi
h, te
hni
ally speaking, do 
ontain geometri
al singularities). We follow this 
onventionhere.Kaluza-Klein solitons (in this general sense) were noted as early as 1951 by He
kmann, Jordan &Fri
ke [327℄, who found several solutions of the �ve-dimensional va
uum Einstein equations that werestationary and spheri
ally-symmetri
 in three-spa
e. K�uhnel & S
hmutzer [328℄ 
arried the problemfurther in 1961, studying for the �rst time the motion of test parti
les in the �eld of the 
entralmass. (Tangherlini [329℄ used the alleged instability of su
h \generalized Keplerian orbits" to arguethat there were only three spatial dimensions.) This 
ru
ial aspe
t of Kaluza-Klein theory has beenre-examined over the years by several other authors [226℄, [239℄, [240℄, [330℄, and provides one of themost promising ways to 
onstrain it observationally. We will return to it below.The �rst systemati
 studies of stationary Kaluza-Klein solutions with spheri
al symmetry ap-peared in 1982 with the work of Chodos & Detweiler [228℄ and Dobias
h & Maison [331℄. The formerauthors obtained a 
lass of �ve-dimensional solutions 
hara
terized by three parameters (mass plusele
tri
 and s
alar 
harge) and emphasized the important point that solitons are generi
 to Kaluza-Klein theory in the same way that bla
k holes are to ordinary general relativity. This is what makesthem so important in 
onfronting the theory with experiment. The latter authors worked in Ddimensions (although the internal spa
e was restri
ted to be 
at) and their solutions a

ordinglypossess four or more parameters. Various aspe
ts of Chodos-Detweiler and Dobias
h-Maison solitonshave been studied in [215℄, [332℄.The physi
al properties of �ve-dimensional solitons with zero ele
tri
 
harge were �rst des
ribedin detail by Sorkin [225℄, Gross & Perry [226℄, and Davidson & Owen [227℄, whose solutions (givenby eq. (77) in the notation of [227℄) are 
hara
terized by two parameters. Although these latterauthors (along with many others) des
ribe their solutions as \bla
k holes," it is important to notethat in some 
ases the obje
ts being 
onsidered are naked singularities [332℄, or have singular eventhorizons [215℄, [333℄. The term \monopole" is also potentially misleading sin
e more 
ompli
atedsolitons 
an, for example, take the form of dipoles [226℄. For these reasons we prefer to stay with the45



broader term \solitons" in this report.The Chodos-Detweiler metri
 was generalized by Gibbons & Wiltshire [334℄ to in
lude extranondiagonal terms, introdu
ing a fourth parameter (asso
iated with magneti
 
harge). These authorsalso 
onsidered the thermodynami
s of Kaluza-Klein solitons for the �rst time. Myers & Perry [335℄then extended the dis
ussion to D-dimensional solitons with spheri
al symmetry in (D � 1), ratherthan three spatial dimensions, whi
h allowed them to obtain Kaluza-Klein versions of the Reissner-N�ordstrom and Kerr metri
s, as well as the S
hwarzs
hild one. The thermodynami
al propertiesof these obje
ts, espe
ially in six and ten dimensions, were examined by A

etta & Gleiser [336℄.Myers [337℄ 
onsidered solitons whi
h were not asymptoti
ally Minkowskian. And Yoshimura [166℄took the bold step of allowing dependen
e of his solutions (albeit only the (D� 4)-dimensional part)on extra dimensions. Others have studied the stability of soliton solutions with respe
t to 
lassi
alperturbations [338℄-[340℄ and quantum e�e
ts [341℄.All this work was done in a higher-dimensional va
uum; that is, with no expli
it higher-dimensionalmatter. But most 
ompa
ti�ed Kaluza-Klein theories, as we have seen, operate in 
urved higher-dimensional spa
es and require su
h matter (or other modi�
ations of the Einstein equations) toensure proper 
ompa
ti�
ation, among other things. This is just as true for soliton solutions as
osmologi
al ones. Non-Abelian solitons have a

ordingly been 
onstru
ted by many authors using,for example, the Freund-Rubin �elds of D = 11 supergravity [342℄, suitably de�ned six-dimensional[343℄ or seven-dimensional matter �elds [344℄, and various D-dimensional s
alar �elds [345℄-[350℄.Others have preferred to stay in a higher-dimensional va
uum, opting for higher-derivative 
orre
tionsto the Einstein equations, in
luding (quadrati
) Gauss-Bonnet [351℄ and 
ubi
 [352℄ 
urvature terms;or for modi�
ations of the Kaluza-Klein me
hanism su
h as \lo
al 
ompa
ti�
ation" [353℄.8.2 Are Solitons Bla
k Holes?The rest of this report is 
on
erned with solitons of the �ve-dimensional Gross-Perry-Davidson-Owen-Sorkin (GPDOS) type [225℄-[227℄, with the line element (77) in the notation of Davidson& Owen. Other spheri
ally-symmetri
 stati
 solutions, like the 
lass found by Billyard & Wesson[186℄, and those with more than two independent parameters [193℄, [194℄, are subje
ts for futureresear
h. Insofar as the metri
 
oeÆ
ients of eq. (77) do not depend on the �fth 
oordinate, thedistin
tion between 
ompa
ti�ed and non
ompa
ti�ed approa
hes is not an issue here. It would,however, be
ome 
ru
ial in higher-dimensional generalizations of what follows. We will interpretthe four-dimensional properties of Kaluza-Klein solitons as indu
ed by the geometry of empty �ve-dimensional spa
e [20℄ in the manner of x6.3. When D > 5 this requires either a non
ompa
ti�edapproa
h, or modi�
ations to the �eld equations, as des
ribed at the end of the last se
tion.The �rst question to address is whether GPDOS solitons in the indu
ed-matter interpretation 
anrightly be 
onsidered bla
k holes. The two 
lasses of obje
t are alike in one important respe
t: they
ontain a 
urvature singularity at the 
enter of ordinary three-spa
e. However: (1) solitons do nothave an event horizon (not as understood in ordinary general relativity, at any rate); and (2) theyhave an extended matter distribution, rather than having all their mass 
ompressed into the 
entralsingularity. In this se
tion we try to 
larify these properties, whi
h make the term \bla
k hole" aninappropriate one in the 
ontext of indu
ed-matter Kaluza-Klein theory.To begin with, it is apparent from the spatial 
omponents of the metri
 (77) that the 
enter ofthe 3-geometry is at r = 1=a and not r = 0. The surfa
e area of 2-shells varies as (ar � 1)1��(k�1),and this shrinks to zero at r = 1=a, given that k > 0 (as required above for positive density),and that the 
onsisten
y relation (76) holds. The point r = 0 is, in fa
t, not even part of themanifold, whi
h ends at r = 1=a. That this spatial 
enter marks the lo
ation of a bona �de 
urvaturesingularity, and not merely a 
oordinate one, may be veri�ed by evaluating the appropriate invariantgeometri
 s
alars. The square of the �ve-dimensional Riemann-Christo�el tensor (or Krets
hmann46



s
alar K̂ � R̂ABCDR̂ABCD), for example, reads in isotropi
 
oordinates [182℄:K̂ = 192a10r6(a2r2 � 1)8�ar � 1ar + 1�4�(k�1)h1� 2�(k � 1)(2 + �2k)ar+2(3� �4k2)a2r2 � 2�(k � 1)(2 + �2k)a3r3 + a4r4i ; (136)and this is manifestly divergent at r = 1=a (with k > 0). (In the S
hwarzs
hild limit this expressionsimpli�es to K̂ = 192a10r6(ar+1)�12, whi
h is formally the same as that in four-dimensional Einsteintheory. This however has little signi�
an
e from the Kaluza-Klein point of view sin
e the pointr = �1=a is not in the manifold.) The relevant four-dimensional 
urvature invariant is the square ofthe Ri

i tensor, C � R��R��, and this 
omes out as [182℄:C = 8�2a10r6(a2r2 � 1)8�ar � 1ar + 1�2�(k�1)h3 + 4�(3� 2k)ar + 2(3 + 6�2 + 4�2k2�8�2k)a2r2 + 12�a3r3 + 3a4r4i ; (137)whi
h is also manifestly divergent at the 
enter of the soliton, r = 1=a.For bla
k holes in general relativity, the event horizon is 
ommonly de�ned in general 
oordinatesas the surfa
e where the norm of the timelike Killing ve
tor vanishes. In our 
ase the Killing ve
toris just (1; 0; 0; 0) so its norm vanishes where g00 does. For the soliton metri
 (77) this happens atr ! 1=a, given that k > 0 and � > 0 (we will �nd below that physi
ality requires both these
onditions). For physi
al solitons, in other words, the event horizon shrinks to a point at the 
enterof ordinary spa
e. Kaluza-Klein solitons must therefore be 
lassi�ed as naked singularities, as noti
edpreviously by several authors [142℄, [215℄, [333℄, [348℄. A

ording to the 
osmi
 
ensorship hypothesis,su
h obje
ts should not be realized in nature. The relevan
e of this (essentially four-dimensional)postulate to �ve-dimensional obje
ts may, however, be debated. In any 
ase we will show below thatif they exist, they 
ould be dete
table by 
onventional astrophysi
al te
hniques.What of the soliton's mass distribution? Applying the standard de�nition [234℄ and using thesoliton metri
 (77), one �nds [182℄:Mg(r) = 2�ka �ar � 1ar + 1�� : (138)(G = 
 = 1 throughout x8 unless otherwise noted.) This is the gravitational (or Tolman-Whittaker) mass of a Kaluza-Klein soliton as a fun
tion of (isotropi
) radius r. Other 
ommonly-usedde�nitions of mass 
an be evaluated [182℄ but do not lend themselves readily to physi
al interpre-tation. For positive mass (as measured at in�nity) one must have �k > 0. Sin
e positive densityrequires in addition that k > 0, it is apparent that both k and � must be positive for realisti
 solitons.Eq. (138) therefore implies that the gravitational mass of the soliton goes to zero at the 
enter -behaviour whi
h di�ers radi
ally from that exhibited by bla
k holes. Rather than being 
on
entratedinto a pointlike singularity, the mass of the soliton is distributed in an extended fashion (althoughthe � 1=r4-dependen
e of density noted above means that this distribution is still a sharply peakedone).The soliton de�ned by the S
hwarzs
hild limit is, however, spe
ial in this regard. If one simplytakes the S
hwarzs
hild values � = 0, �k = 1 and puts them dire
tly into eq. (138), one �nds thatMg(r) = 2=a = 
onstant for all r. Repla
ing the parameter a via M� � 2=a and putting this into47



the metri
, eq. (77), one re
overs on spa
etime se
tions the four-dimensional S
hwarzs
hild solution(78), with \S
hwarzs
hild mass" M�. Alternatively, however, one might keep � arbitrarily small andallow r ! 1=a. In this 
ase one �nds that Mg(r) ! 0 irrespe
tive of �. In other words, thereis an ambiguity in the limit by whi
h one is supposed to re
over the S
hwarzs
hild solution fromthe soliton metri
. The problem is reminis
ent of one investigated by Janis, Newman & Wini
our[354℄, [355℄ and others [347℄, [356℄, [357℄, in whi
h the presen
e of a s
alar �eld in four-dimensionalgeneral relativity led to ambiguity in de�ning the 
enter of the geometry. In their 
ase perturbationanalysis led to a satisfa
tory resolution of the problem (in whi
h the S
hwarzs
hild \horizon" atr = 2M� turned out to be a point). Adopting the same approa
h, Wesson & Pon
e de Leon [182℄have 
ondu
ted a numeri
al study of eq. (138), and this leads unambiguously to the 
on
lusion thatin the S
hwarzs
hild limit (as de�ned by k ! 1 and � ! 0) the mass does go to zero at r = 1=a.The pi
ture that emerges from this numeri
al work is of an extended 
loud of matter whose massdistribution be
omes more and more 
ompressed near its 
enter as the parameters � and k approa
htheir S
hwarzs
hild values. Due to the nature of the geometry, however, the en
losed gravitationalmass at the 
enter is always zero.8.3 Extension to the Time-Dependent CaseThe results of the last se
tion make it 
lear that Kaluza-Klein solitons, although they 
ontain sin-gularities at their 
enters, are not bla
k holes, sin
e they have neither pointlike mass distributionsnor event horizons of the 
onventional type. A third 
ru
ial di�eren
e between these two 
lassesof obje
ts, whi
h follows from the fa
t that Birkho�'s theorem does not hold in �ve dimensions, isthat soliton metri
s 
an be generalized to in
lude time-dependen
e. This goes somewhat against theidea of a soliton as a stati
 solution of the �eld equations. However, it is reasonable to suppose thatsolitons, if they exist, must have been formed in some astrophysi
al or 
osmologi
al pro
ess duringwhi
h they 
ould not have been entirely stati
. So it is of physi
al, as well as mathemati
al interestto study the extension to time-dependent solutions.Liu, Wesson & Pon
e de Leon [192℄ have 
onsidered the 
ase in whi
h the 
oeÆ
ients �, ! and �of the general spheri
ally-symmetri
 metri
 (65) depend not only on the radial 
oordinate r (as inthe GPDOS solution (77)), but on t as well. The metri
 
oeÆ
ients are still assumed to be separablefun
tions, so that eqs. (6.6) are in e�e
t repla
ed by:e� � A2(r)T 2(t) ; e! � B2(r)U2(t) ; e� � C2(r)V 2(t) : (139)The �eld equations then produ
e two sets of di�erential equations, for whi
h four 
lasses of solu-tions have been identi�ed. We list these here, with brief 
omments. All the solutions have T (t) =
onstant. The �rst 
lass has U(t) = 
onstant as well, along with A(r) = C(r), and looks like:dŝ2 = A2(r)dt2 � B2(r)d�2 � A2(r)V 2(t)d 2 ; (140)where d�2 = dr2+r2d
2 as usual, and V (t) 
an have either an os
illating form V (t) = 
os(!t+') oran exponentially varying one V (t) = exp(�Ht) (the parameters ' and H are arbitrary 
onstants).The four-dimensional parts of these solutions are stati
, and only the extra-dimensional part varieswith time. In the 
ase of the de
aying exponential solution, the time-dependent soliton tends towarda stati
 one as t� H�1.The se
ond 
lass of solutions has V (t) = U�1(t) and C(r) = A�1=2(r), and 
an be written in theform: dŝ2 = A2(r)dt2 � U2(t)B2(r)d�2 � U�2(t)A�1(r)d 2 ; (141)48



where U(t) satis�es a di�erential equation exa
tly analogous to one in standard FRW 
osmology, andis given by U(t) =p' +Ht� �t2 (with � = �1; 0 playing the role of a 
urvature 
onstant). This isthe most interesting of the time-dependent soliton solutions, and has been looked at separately byWesson, Liu & Lim [191℄. The fun
tions A(r) and B(r) 
an, for instan
e, be taken to be the sameas those of the stati
 soliton, eqs. (75). The parameters � and k obey the 
onsisten
y relation (76)as before, and here take the values 1=p3 and 2 respe
tively. Choosing in addition ' = 1 and � = 0for 
onvenien
e, the metri
 (141) be
omes:dŝ2 = �ar � 1ar + 1�4=p3dt2 � �a2r2 � 1a2r2 �2�ar + 1ar � 1�2=p3(1 +Ht)d�2��ar + 1ar � 1�2=p3(1 +Ht)�1d 2 : (142)In the indu
ed-matter interpretation this geometry manifests itself in four dimensions as matterwith anisotropi
 pressure. Using the same te
hnique as in x6.6 (identifying the pressure three-tensorpji and de�ning p � pii=3), one 
an nevertheless derive a unique equation of state. This turns out tobe [191℄: � = a6r43�(1 +Ht)(a2r2 � 1)4�ar � 1ar + 1�2=p3 + 3H232�(1 +Ht)2�ar + 1ar � 1�4=p3p = �=3 : (143)The matter 
omprising this time-dependent soliton satis�es the the relativisti
 equation of state,as expe
ted sin
e the metri
 
oeÆ
ients are all independent of  . What is interesting about thissolution (142) is that it redu
es to the radiation-dominated 
osmologi
al metri
 (104) in the limitof zero 
entral mass a ! 1 (ie., M� ! 0). So what began as a metri
 suitable for astrophysi
alproblems may have 
osmologi
al appli
ations, perhaps for modelling solitons in the early universe[191℄.The third 
lass of solutions found in [192℄ has A(r) = 
onstant and U(t) = V (t) = 1 + Ht, andreads: dŝ2 = dt2 � (1 +Ht)2hB2(r)d�2 + C2(r)d 2i : (144)For these solitons the �fth dimension is expanding along with the three-dimensional spatial part.The fourth 
lass of solutions, �nally, also has U(t) = 1 + Ht, but uses V (t) = U `(t) and C(r) =[A(r)℄(`+2)=(`�1), where ` is another arbitrary 
onstant. The asso
iated line element looks like:dŝ2 = A2(r)dt2 � (1 +Ht)2B2(r)d�2�(1 +Ht)2`[A(r)℄2(`+2)=(`�1)d 2 : (145)For these solitons the three-dimensional spa
e expands, but the �fth dimension 
an either expand,
ontra
t, or remain stati
 a

ordingly as ` > 0, ` < 0, or ` = 0 respe
tively.8.4 Solitons as Dark Matter CandidatesViewed in four dimensions via the indu
ed-matter me
hanism, the soliton resembles a hole in thegeometry surrounded by a spheri
ally-symmetri
 ball of ultra-relativisti
 matter whose density falls49



o� at large distan
es as 1=r4. If the universe does have more than four dimensions, these obje
tsshould be quite 
ommon, being generi
 to Kaluza-Klein gravity in exa
tly the same way bla
k holesare to general relativity [180℄, [228℄. It is therefore natural to ask whether they 
ould supply the as-yetundete
ted dark matter whi
h a

ording to many estimates makes up more than 90% of the matter inthe universe. Other dark matter 
andidates, like massive neutrinos or axions, primordial bla
k holes,and a �nite-energy va
uum, en
ounter problems with ex
essive 
ontributions to the extragala
ti
ba
kground light (EBL) and the 
osmi
 mi
rowave ba
kground radiation (CMB), among other things[358℄. In view of this we 
onsider here the possibility that the so-
alled \missing mass" 
onsists ofsolitons.Adopting the same approa
h that has led to strong 
onstraints on some of these other dark matter
andidates [358℄, one 
an begin by attempting to assess the e�e
ts of solitons on ba
kground radiation[185℄, assuming that the 
uid making up the soliton is in fa
t 
omposed of photons (although thereare no a priori reasons to rule out, say, ultra-relativisti
 neutrinos or gravitons). Rather than guessingat their spe
tral distribution we restri
t ourselves to bolometri
 
al
ulations for the time being. Thesoliton density �s at large distan
es 
omes from eq. (79), and in the same regime eq. (138) givesMg � 2�k=a. Therefore, for solitons of asymptoti
 mass Ms:�s � M2s8�
2kr4 ; (146)where we have restored 
onventional units. Be
ause this goes as 1=r4 while volume (in the uniform
ase) in
reases as only r3, lo
al density will be overwhelmingly due to just one soliton - the nearestone - and we do not need to know about the global distribution of these obje
ts in spa
e. The averageseparation between solitons of mass Ms in terms of their mean density ��s is r = (Ms=��s)1=3, andwe 
an use this as the distan
e to the nearest one. Writing the mean soliton density as a fra
tion
s � ��s=�
rit of the 
riti
al density �
rit = 1:88� 10�26h2kgm�3 [359℄ (where h is the usual Hubbleparameter in units of 100 km s�1 Mp
�1), we then �nd that the e�e
tive lo
al density (146) ofsolitoni
 radiation, expressed as a fra
tion of the CMB density, is:�s�CMB � 5:0� 10�13h8=3k�1
4=3s �MsM��2=3 ; (147)where M� stands for one solar mass and �CMB = 2:5� 10�5h�2�
rit is the equivalent mass density ofthe CMB at zero redshift [359℄. The quantity k is a free parameter, subje
t only to the 
onsisten
yrelation (76). A parti
ularly 
onvenient 
hoi
e for illustrative purposes is k = 1 (whi
h implies � = 1also). This 
lass of solutions was dis
overed independently by Chatterjee [142℄ and has the spe
ialproperty that gravitational massMg(r) at large distan
es r� 1=a is equal to the S
hwarzs
hild massM�. If we suppose that individual solitons have gala
ti
 mass (Ms = 5 � 1011M�) and that they
olle
tively make up all the dark matter required to 
lose the universe (
s = 0:9), then eq. (147)tells us that distortions in the CMB will be of the order:�s�CMB � 1:0� 10�5 ; (148)where we have used h = 0:7 for the Hubble parameter. This is pre
isely the upper limit set by COBEand other experiments on anomalous 
ontributions to the CMB. So we 
an 
on
lude that solitons, ifthey are to provide a signi�
ant part of the missing mass, are probably less massive than galaxies.A similar argument 
an be made on the basis of tidal e�e
ts. It is known that 
onventional darkmatter 
andidates su
h as bla
k holes 
an be ruled out if they ex
eed � 108M� in mass, sin
e su
hobje
ts would ex
essively distort the shapes of nearby galaxies. The same thing would apply tosolitons. However, one has to keep in mind that there is no reason for the parameters k and � to50



be equal to one for all solitons. They are not universal 
onstants like 
 or G, but 
an in prin
iplevary from soliton to soliton. Those with k < 1 will have e�e
tive gravitational masses below the
orresponding S
hwarzs
hild ones, and will 
onsequently be less strongly 
onstrained. A soliton withk = 0:1, for example, will have � = 1:05 from eq. (76), and its gravitational mass (138) at large rwill be Mg = 0:105M� - only one-tenth the 
onventional value. And in the extreme 
ase �k ! 0, itsgravitational mass will vanish altogether. So while these are promising ways to look for Kaluza-Kleinsolitons, 
aution must be taken in interpreting the results. Ideally one would like to be able to applyone or more independent tests to a given astrophysi
al system. We therefore devote the rest of thisreport to outlining the impli
ations of Kaluza-Klein gravity for the 
lassi
al tests of general relativity,and for related phenomena su
h as those having to do with the prin
iple of equivalen
e.8.5 The Classi
al TestsIt is 
onvenient to swit
h from the notation of Davidson & Owen [227℄ to that of Gross & Perry[226℄, and to 
onvert from isotropi
 
oordinates to nonisotropi
 ones (in whi
h r0 = r(1+GM�=2r)2).The soliton metri
 (77) then takes the form:dŝ2 = �1� 2M�r0 �1=�dt2 � (1� 2M�=r0)(����1)=�(1� 2M�=r0) dr02��1� 2M�r0 �(����1)=�r02d
2 � �1� 2M�r0 ��=�d 2 : (149)where � and � are related to � and k by � = ��=� and k = �1=�, and where we have repla
ed theGross-Perry parameter m by M�=2. Eq. (149) 
learly redu
es to the familiar S
hwarzs
hild solutionon hypersurfa
es  = 
onstant as � ! 1 and � ! 0. De�ning two new parameters a � 1=� andb � �=�, together with the fun
tion A(r) � 1� 2M�=r, eq. (149) be
omes:dŝ2 = Aadt2 � A�(a+b)dr2 � A(1�a�b)r2d
2 � Abd 2 ; (150)where we have dropped the primes on r for 
onvenien
e. The 
onsisten
y relation (76) takes theform: a2 + ab + b2 = 1 : (151)We wish to analyze the motion of photons and massive test parti
les in the �eld des
ribed bythe metri
 (150). The Lagrangian density L 
an be obtained from L2 = gik _xi _xk, where the xi aregeneralized 
oordinates and the overdot denotes di�erentiation with respe
t to an aÆne parameter(su
h as proper time in the 
ase of massive test parti
les) along the parti
le's geodesi
 traje
tory.For the metri
 (150) this gives:L2 = Aa _t2 � A�(a+b) _r2 � A1�a�br2( _�2 + sin2 � _�2)� Ab _ 2 : (152)From symmetry we 
an assume that _� = 0, so � = �=2 without loss of generality. Appli
ation ofthe Euler-Lagrange equations to the Lagrangian (152) immediately produ
es three 
onstants of themotion: l � Aa _t ; h � A(1�a�b)r2 _� ; k � Ab _ : (153)51



The third of these quantities, k, is related to the velo
ity of the test parti
le along the �fthdimension. The \S
hwarzs
hild limit" of the theory hereafter refers to the values a = 1, b = 0 andk = 0. With eqs. (152) and (153) we are in a position to des
ribe the motion of photons and testbodies in the weak-�eld approximation (ie., negle
ting terms in (M�=r)2 and higher orders). Thepro
edure is exa
tly analogous to that in ordinary general relativity [360℄, and sin
e details havebeen given elsewhere [148℄, [187℄-[190℄ we 
on�ne ourselves in what follows to summarizing only themain assumptions and 
on
lusions.8.6 Gravitational RedshiftThis test depends only on the 
oeÆ
ients of the metri
 (150) and, sin
e the latter is stati
, one 
an
onsider emitters and re
eivers of light signals with �xed spatial 
oordinates. The ratio of frequen
iesof the re
eived and emitted signals is simply:�r�e = g00(re)g00(rr) ; (154)where re and rr are the positions of the emitter and re
eiver respe
tively. Using the metri
 (150)and dis
arding terms of se
ond and higher orders in M�=r, one �nds [188℄ that:�r � �e�e = aM�� 1rr � 1re� : (155)From this result it is 
lear that the gravitational redshift in Kaluza-Klein theory is in perfe
tagreement with that of four-dimensional general relativity, as long as one de�nes the gravitationalmass Mg of the soliton by Mg � aM�.8.7 Light De
e
tionThe light de
e
tion test is more interesting. Noting that dŝ2 = 0 for photons, and substituting theexpressions (153) into eq. (150), one �nds the following equation of motion:� drd��2 � (A(2�2a�b)l2 � A(2�a�2b)k2) r4h2 + Ar2 = 0 : (156)For weak �elds this 
an be solved [188℄ to yield a hyperboli
 orbit r(�) in whi
h the photonapproa
hes the 
entral mass from in�nity at � = 0 and es
apes to in�nity along � = � + !. Thetotal de
e
tion angle ! is given by: ! = 4M�r0 + 2M�pr0 ; (157)where p � (2� a� 2b)(k=h)2� (2� 2a� b)(l=h)2 and r0 is the impa
t parameter (distan
e of 
losestapproa
h to the 
entral mass). The �rst term in eq. (157) is the familiar Einstein light de
e
tionangle. The se
ond term represents a 
orre
tion due to the presen
e of the �fth dimension, and is inprin
iple measurable. (Note that the apparent linear dependen
e of this term on r0 is illusory as pinvolves the square of the \angular momentum" 
onstant h / r0 in its denominator.)The physi
al meaning of this result 
an be 
lari�ed by using the metri
 (150) and the de�nitions(153) to re
ast eq. (157) in the form [189℄: 52



! = 4M�r0 �1� �f �m(d =dt)21� n(d =dt)2 �� ; (158)where: f � (1� a� b=2)A�(1�2a�b) ;m � (1� a=2� b)A�(1�3b) ; n � A�(a�b) : (159)The m- and n-terms 
an be ignored when the velo
ity d =dt of the test body along the �fth dimen-sion is negligible. This is 
ertainly true for photons (whose velo
ity is 
onstant in four dimensions).In addition one 
an go to the weak-�eld limit and negle
t terms of �rst order in M�=r 
ompared toone, so that A = 1. In that 
ase f = 1� (a+ b=2) and eq. (158) be
omes:! = 4M�r0 �a+ b2� : (160)This redu
es to the general relativisti
 result in the S
hwarzs
hild limit. For other values of a andb, the Kaluza-Klein light-bending angle will depart from Einstein's predi
tion, and it is natural toinquire how big su
h a departure 
ould be. The 
onsisten
y relation (151) implies that (a + b=2) =p1� 3b2=4, so in prin
iple eq. (160) is 
ompatible with a range of angles �!GR � ! � !GR,where !GR is the general relativisti
 value. This would allow for null de
e
tion (for b2 = 4=3) andeven light repulsion (for negative roots). These possibilities are, however, unphysi
al to the extentthat they imply negative values for the (four-dimensional) mass of the soliton. Inertial mass Mi,for example, 
an be obtained from the Landau pseudo energy-momentum tensor [190℄, [214℄, [226℄,[361℄, and turns out to be Mi = (a + b=2)M�. Therefore if one requires positivity of inertial mass,then (a + b=2) � 0, whi
h is in
ompatible with light repulsion. Similarly, gravitational mass Mg isfound from the asymptoti
 behaviour of ĝ00 [190℄, [214℄, [226℄, [361℄ to be given by Mg = aM� (seealso x8.6). (As dis
ussed in these referen
es, and in x8.11, the fa
t that Mg 6=Mi for b 6= 0 need notne
essarily 
onstitute a violation of the equivalen
e prin
iple in Kaluza-Klein theory.) Combining therequirements that Mg � 0 and Mi � 0 with the 
onsisten
y relation (151), one �nds that 0 � b � 1.Therefore if one requires positivity of both inertial and gravitational mass, then the Kaluza-Kleinlight de
e
tion angle (160) must lie in the range 0:5!GR � ! � !GR, whi
h rules out null de
e
tionas well as light repulsion.This however still leaves room for signi�
ant departures from general relativity. Why have thesenot been observed? Most tests to date have been 
arried out in the solar system whi
h, 
onsidered asa soliton, is very 
lose to the limiting S
hwarzs
hild 
ase sin
e nearly all its mass is 
on
entrated nearthe 
enter. From this perspe
tive the fa
t that long-baseline interferometri
 measurements of solarlight-bending [197℄ have 
on�rmed Einstein's predi
tion to within a fa
tor of �10�3 merely tell us -via eq. (160) - that the Sun must have b < 0:05. Larger values of this parameter, and hen
e largerdeviations from the predi
tions of general relativity, might be looked for in the halos of large ellipti
algalaxies, or in 
lusters of galaxies, where mass is more evenly distributed. Mu
h of the dark matter iswidely believed to be in these pla
es, and if some or all of it is made up of Kaluza-Klein solitons thenone 
ould hope to �nd eviden
e of anomalous de
e
tion angles in observations of gravitational lensingby ellipti
al galaxies [362℄, galaxy 
lusters [363℄-[366℄, and perhaps in observations of mi
rolensingby ri
h 
lusters [367℄.Just as in four-dimensional general relativity, one 
an also solve the equation of motion (156) for
ir
ular, as well as hyperboli
 photon orbits. Putting _r = 0 gives [188℄:(1� 2a� b)r2 + AM� r3 + (b� a)A(1�a�2b) k2r4h2 = 0 : (161)53



For negligible motion along the �fth dimension (k = 0) this leads to:r = (1 + 2a+ b)M� : (162)In the S
hwarzs
hild limit this gives ba
k the general relativisti
 result. For other values of a andb, 
ir
ular photon orbits 
an o

ur at other radii. However, prospe
ts for distinguishing betweenalternative theories of gravity based on this phenomenon are slim [197℄, so we do not 
onsider itfurther.8.8 Perihelion Advan
eThe ellipti
al orbits of massive test bodies in orbit around the 
entral mass are of greater interest[187℄. Using dŝ2 6= 0 leads to a slightly more 
ompli
ated version of the equation of motion (156).This 
an be solved for the orbit of the test body, whi
h is nearly periodi
. The departure fromperiodi
ity per orbit, or perihelion shift, is found [188℄ to be:Æ� = 6�M2�h2 �d+ e6� ; (163)where: d � (1 + k2) + (a� 1)(�1 + 2l2 � k2) + b(�1 + l2 � 2k2) ;e � 2(2� a� b)(�1 + a+ b) + 2l2(�2 + 2a+ b)(�1 + 2a + b)+2k2(2� a� 2b)(�1 + a+ 2b) : (164)This gives ba
k the usual general relativisti
 result in the S
hwarzs
hild limit. If the orbit is nearly
ir
ular then eq. (163) 
an be simpli�ed to read:Æ� = 6�M�r �a+ 2b3 � ; (165)where r is the orbit's 
oordinate radius. As with the light de
e
tion test, solar system experiments(pre
ession of Mer
ury's orbit) imply that the Sun, if modelled as a soliton, must have values of aand b very 
lose to the S
hwarzs
hild ones. Extrasolar systems, however, might show nonstandardperiastron shifts. Candidate systems 
ould in
lude DI Her
ulis [368℄ and AS Camelopardalis [369℄,as well as binary pulsars [370℄, x-ray binaries [371℄, and possibly pulsars with planetary 
ompanions[372℄, [373℄. (Eq. (163) would require modi�
ations for systems with signi�
ant mass ratios.)8.9 Time DelayA similar pro
edure gives the proper time taken by a photon on a return trip between any two pointsin the �eld of the 
entral mass. The de�nitions (153) and equation of motion (156) lead to thefollowing result [188℄:�� = 2�1� 2M�r �a��1 + 12�kl �2��qr2p � r2o +pr2e � r2o�54



�M��1 + 12�kl �2��qr2p � r2orp + pr2e � r2ore �+M��(2a+ b) + 3b2 �kl �2�� ln�rp +qr2p � r2oro �+ ln�re +pr2e � r2oro ��� ; (166)where ro, re and rp are the photon's distan
e of 
losest approa
h to the 
entral mass and the radiusmeasures to the emitting planet (usually Earth) and re
e
ting planet respe
tively, and r is the
oordinate radius at whi
h measurement is made (usually the same as re). In the S
hwarzs
hildlimit, eq. (166) gives ba
k the usual result of four-dimensional general relativity. Experimental datasu
h as that from the Viking spa
e
raft [197℄ tell us that our solar system is 
lose to this limit.8.10 Geodeti
 Pre
essionThe motion of a spinning obje
t in �ve dimensions is more 
ompli
ated, but 
an be usefully studiedin at least two important spe
ial 
ases: (1) the 
ase in whi
h the 4 
omponent of the spin ve
tor ŜAis zero [188℄; and (2) the 
ase in whi
h the 4-
omponent of spa
etime is 
at [183℄. We review thesein turn.The obje
t in both 
ases is to solve for ŜA as a fun
tion of proper time ŝ. The requirement ofparallel transport implies: dŜMdŝ + �̂MABŜA�̂B = 0 ; (167)where �̂A � dxA=dŝ is the �ve-velo
ity. Sin
e ŜA is spa
elike whereas �̂B is timelike, their innerprodu
t 
an be made to vanish: ĝABŜA�̂B = 0 : (168)Eqs. (167) and (168), together with the metri
, 
an be solved for the 
omponents of the spinve
tor ŜA if some simplifying assumptions are made.To evaluate 
ase (1) we use the Gross-Perry soliton metri
 (150), we restri
t ourselves to 
ir
ularorbits xA(ŝ), (for whi
h the velo
ity ve
tor �̂A 
an be written �̂A = (t; 0; 0; td�=dt; 0)), and assumethat Ŝ4 = 0. The resulting expressions for the 
omponents of ŜA are lengthy [188℄ and not parti
ularlyilluminating. The important thing about them is that the spatial 
omponents Ŝi show a rotationrelative to the radial dire
tion, with proper angular speed [188℄:
 = � [r � (1 + a+ b)M�℄r(a�1)=2(r � 2M�)(a+1)=2 �
0 ; (169)where 
0 � d�=dt is given by:
0 = �(1� a� b)a �1� 2M�r �1�2a�br2+ 1aM��1� 2M�r �2�2a�br3�1=2 : (170)55



A spin ve
tor ŜA whose initial orientation is along the radial dire
tion will, after one revolutionalong xA(ŝ), undergo a geodeti
 pre
ession:Æ� = 2��1� pr � (1 + a+ b)M�pr � (1 + 2a+ b)M�pr(r � 2M�) � : (171)Going to the weak-�eld limit and using the 
onsisten
y relation (151), one 
an redu
e this expres-sion to: Æ� = 3�M�r �a+ 2b3 � ; (172)whi
h gives ba
k the usual general relativisti
 result in the S
hwarzs
hild limit. In general therewill be deviations from Einstein's theory whi
h are in prin
iple measurable. One way to dete
tthem would be with orbiting gyros
opes like those aboard the Gravity Probe-B (GP-B) satellite[374℄, designed to orbit the earth at an altitude of 650 km. Assuming for the sake of illustrationthe same value of b = 0:05 mentioned in x8.7 as the largest one 
ompatible with solar light-bendingexperiments, one �nds from eq. (172) that the geodeti
 pre
ession in Kaluza-Klein theory wouldbe 1.238 milliar
se
onds per revolution, or an angular rate of 6.674 ar
se
 yr�1. This ex
eeds thegeneral relativisti
 predi
tion (6.625 ar
se
 yr�1) by 49 milliar
se
 yr�1 - a di�eren
e that wouldeasily be dete
ted by GP-B. In fa
t this satellite is expe
ted to measure angular rates as small as 0.1milliar
se
 yr�1, whi
h would allow it to probe b-values as small as 10�4.We turn now to 
ase (2), in whi
h the spin ve
tor ŜA is arbitrary but the �fth dimension ofspa
etime is 
at. Instead of the soliton metri
 (150) we introdu
e a simpler �ve-dimensional lineelement [183℄ whi
h is also spheri
ally-symmetri
 in three-dimensional spa
e:dŝ2 =  2L2��1� 2M�r � r2L2�dt2��1� 2M�r � r2L2��1dr2 � r2d
2�� d 2 : (173)This redu
es to the four-dimensional S
hwarzs
hild-de Sitter line element on surfa
es  = 
onstant:ds2 = �1� 2M�r � r2L2�dt2 � �1� 2M�r � r2L2��1dr2 � r2d
2 ; (174)and the 
onstant L (whi
h has units of length) gives rise to an e�e
tive four-dimensional 
osmologi
al
onstant � = 3=L2 [178℄, [179℄. The four-dimensional universe is 
hara
terized by indu
ed matterwhose density and pressure are found from eqs. (63) to be given by � = 3= 2 and p = ��.Consider �rst of all an obje
t whi
h is not spinning. Its orbit xA(ŝ) is found using the metri
relation (173), whi
h satis�es a 
onsisten
y relation:ĝAB�̂A�̂B = 1 ; (175)together with the geodesi
 equation (96). The A = 5 
omponent of this latter equation turns out[183℄ to be: d2 dŝ2 + 1 �d dŝ�2 + 1 = 0 : (176)56



This has the simple solution  2 =  2m � ŝ2, where  m = 
onstant. Sin
e eqs. (173) and (174) arerelated by dŝ2 = ( =L)2ds2 � d 2, one �nds that: =  m
osh[(s� sm)=L℄ ; (177)where sm is some �du
ial value of the four-dimensional proper time at whi
h  =  m. Physi
ally,the �fth 
oordinate in this spa
etime expands from zero size to a maximum value of  m, and then
ontra
ts ba
k to zero. We are living in the period s > sm, when  is de
reasing (
f. x7.1) on
osmologi
al times
ales. (The length L is large if the 
osmologi
al 
onstant � is small.)The spatial 
omponents of the geodesi
 equation (96) for this �ve-dimensional metri
 turn out tobe identi
al with the usual four-dimensional ones [178℄, [183℄. This is somewhat surprising sin
e thefour-dimensional metri
 (174) depends on  . It means that the 
lassi
al tests of relativity dis
ussedin x8.6 - x8.9 are by themselves insuÆ
ient to distinguish between Einstein's theory and its �ve-dimensional 
ounterpart. When spin is in
luded, however, the two theories lead to very di�erentpredi
tions. For this we require the full ma
hinery of eqs. (167) and (168) as well as eqs. (96)and (175). Consider for simpli
ity a 
ir
ular orbit as before, and assume that the spin ve
tor lies inthe plane of the orbit (so Ŝ2 = 0), and that one 
an arrange me
hani
ally to satisfy the inequalityrŜ3 � Ŝ1. (These 
onditions are 
lose to those in the GP-B experiment, or alternatively might beused to model the Sun-Uranus system, sin
e the spin axis of Uranus lies near its orbital plane.) Inthis 
ase the four equations noted above allow one to solve for all the 
omponents of the spin ve
tor(in
luding Ŝ4). Its pre
ession from the radial dire
tion after one orbit turns out in the weak-�eldlimit (r2=L2 �M�=r� 1) to be [183℄:Æ� = 3�M�r � 2�H4rH1L 
osh[(s0 � sm)=L℄ ; (178)where s0 is the value of s at the beginning of the orbit, and H1 and H4 are normalized amplitudes ofthe spin ve
tor along the x1 and x4 axes respe
tively. The �rst term is the usual geodeti
 pre
ession offour-dimensional general relativity. The extra term depends on the size H4=H1 of the spin 
omponentalong the �fth dimension, the mass M� of the 
entral body, and 
osmologi
al fa
tors like the elapsedfour-dimensional proper time. It also involves radius in a manner quite di�erent from that of the�rst term, whi
h suggests that the two terms 
ould be separated experimentally. Whether this ispra
ti
al or not has yet to be established, but further investigation is warranted insofar as geodeti
pre
ession is the only test of relativity whi
h 
an in prin
iple allow us to distinguish between the�ve-dimensional metri
 (173) and the four-dimensional one (174).8.11 The Equivalen
e Prin
ipleMany of the above tests show departures from four-dimensional geodesi
 motion. These 
ould beinterpreted as violations of the weak equivalen
e prin
iple (WEP) by the 
urvature of the �fthdimension. However, Gross & Perry [226℄ have argued that they should more appropriately beattributed to a breakdown of Birkho�'s theorem, sin
e the underlying theory is fully 
ovariant in �vedimensions and involves only gravitational e�e
ts. Cho & Park [214℄ have made similar 
omments,arguing that the extra dimension a
ts like a �fth for
e whi
h is, however, indistinguishable fromgravity for an un
harged parti
le. The nature of the �fth for
e in non
ompa
ti�ed theory hasre
ently been treated in depth by Mashhoon et al. [26℄. Here we 
onsider only the simple butdramati
 illustration a�orded by a test body in radial free fall near a soliton. This is the analog ofGalileo's experiments with obje
ts dropped verti
ally in the Earth's gravitational �eld. And whilethis 
ase is somewhat impra
ti
al in the 
ontext of modern tests of gravity, we will see that it leadsto several simple and instru
tive results. 57



For verti
al free-fall, d� = d� = 0, and the equation of motion (156) leads dire
tly to the followingresult in terms of the 
onstants (153):_r2 = Abl2 � Aak2 � A(a+b) : (179)For a parti
le whi
h begins at rest ( _r = 0) at r = r0, this equation gives:l2 = [A(r0)℄a + [A(r0)℄(a�b)k2 : (180)Combining eqs. (179) and (180), one obtains the \energy 
ondition" [188℄:_r2 = ��1� 2M�r �b�1� 2M�r0 �(a�b) � �1� 2M�r �a�k2+�1� 2M�r �b�1� 2M�r0 �a � �1� 2M�r �(a+b) : (181)In the S
hwarzs
hild limit this gives ba
k the familiar four-dimensional formula _r2 = 2M�(1=r �1=r0), whi
h has the same form as the energy equation (for verti
al free-fall) in 
lassi
al Newtoniantheory.The parti
le's 
oordinate velo
ity in the r-dire
tion is given by ur � dr=dt = _rds=dt, and 
an be
al
ulated from eq. (181) and the metri
 (150). It turns out (for r0 !1) to be [188℄:ur = � 1p1 + k2�1� 2M�r �a���1� 2M�r �b � �1� 2M�r �a�k2+�1� 2M�r �b�1� �1� 2M�r �a��1=2 : (182)This expli
itly depends on velo
ity along the �fth dimension through k. Test parti
les with nonzerovalues for this parameter will deviate from geodesi
 traje
tories (in four dimensions) and appear toviolate the WEP. The a and b parameters also produ
e dis
repan
ies with four-dimensional theory.For example, the radius where ur begins to de
rease (as the test parti
le nears the S
hwarzs
hildsurfa
e) di�ers from the simple value of r� = 6M� predi
ted in Einstein's theory. In the 
ase wherek2 � 1 one �nds instead [188℄: r� = 2M��1� �2a+ b3a+ b�1=a��1 : (183)This redu
es to the general relativisti
 result in the S
hwarzs
hild limit.The e�e
ts of the �fth dimension 
an perhaps be most readily appre
iated in the parti
le's a

el-eration, whi
h 
omes from di�erentiating eq. (179):�r = �M�r2 [(a+ b)A(a+b�1) � bl2A(b�1) + ak2A(a�1)℄ (184)In the S
hwarzs
hild limit (a = 1; b = 0) this redu
es to:�r = �(1 + k2)M�r2 ; (185)58



whi
h gives ba
k the familiar four-dimensional result when k = 0. In general, though, the parti
le'shidden velo
ity in the �fth dimension a�e
ts its rate of fall towards the 
entral body in a verysigni�
ant way. For 
ompleteness we note that a parti
le whi
h has k = 0 and starts from rest atin�nity (in whi
h 
ase eq. (180) implies l2 = 1 + k2) will have:�r = �aM�r2 ; (186)at large distan
es (r � 2M�). This 
on�rms that a parti
le a

elerates in the �eld of the soliton ata rate governed by Mg = aM� (the gravitational mass) and not M�. As mentioned in x8.7, neitherMg nor M� is ne
essarily the same as the soliton's inertial mass Mi in Kaluza-Klein theory, the twoquantities being related [190℄, [214℄, [226℄, [361℄ by:Mi = �1 + b2a�Mg : (187)These are stri
tly identi
al only in the S
hwarzs
hild limit b = 0, and in other 
ases there will beapparent violations of the WEP. (Note that the fa
tor of two is missing in ref. [226℄.) Experimentally,one 
an fo
us on the quantity: � � ���� (Mg=Mi)A � (Mg=Mi)B12 [(Mg=Mi)A + (Mg=Mi)B℄ ���� ; (188)where the subs
ripts A and B stand for two obje
ts with di�erent 
ompositions. This is known fromexperiments on the Earth to be less than about 2 � 10�11, and would be measured to as little as10�17 by the proposed Satellite Test of the Equivalen
e Prin
iple (STEP) [375℄. If eq. (187) is valid,then one expe
ts two di�erent solitons to have:� � 12����� ba�B � � ba�A���� ; (189)whi
h vanishes in the S
hwarzs
hild limit b = 0. This relation provides yet another way to probeexperimentally for the possible existen
e of extra dimensions.9 Con
lusionsKaluza uni�ed Einstein's theory of gravity and Maxwell's theory of ele
tromagnetism by the simpledevi
e of letting the indi
es run over �ve values instead of four. Other intera
tions 
an be in
ludedby letting the indi
es take on even larger values, but in our review we have 
on
entrated on theprototype theory viewed as an extension of general relativity. Klein's 
ontribution was to explain theapparently unobserved nature of the extra dimension by assuming it was rolled up to a small size, and
ompa
ti�ed Kaluza-Klein theory remains one of three prin
ipal approa
hes to the subje
t. Anotheris to use the extra dimension as an algebrai
 aid, as in the proje
tive approa
h. A third version ofKaluza-Klein theory, on whi
h we have spent 
onsiderable time sin
e it is the newest, regards the�fth dimension as real but not ne
essarily a simple length or time. In the spa
e-time-matter theory,it is responsible for mass.All three versions of Kaluza-Klein theory are viable as judged by experiment and observation. Inparti
ular, they 
annot be ruled out by the 
lassi
al tests of relativity or results from astrophysi
sand 
osmology. Indeed, it 
an be diÆ
ult to distinguish between the three main versions of Kaluza-Klein theory at the present time be
ause their observational 
onsequen
es are often similar. To help59



di�erentiate between its variants and bring the whole subje
t 
loser to 
riti
al test, we suggest severalthings: (1) A sear
h for exa
t solutions of new types. New Kerr-like solutions, for example, wouldhelp to model spinning elementary parti
les. (2) More work on quantization. This is a perennialproblem, of 
ourse, but the ri
hness of Kaluza-Klein theory may o�er new routes to its resolution.(3) An investigation of the physi
al nature of the �fth dimension. While it is merely a 
onstru
t inthe proje
tive approa
h, it is real and may be
ome large in 
ertain regimes of exa
t solutions in the
ompa
ti�ed approa
h. In the non
ompa
ti�ed approa
h, it is not only real but in prin
iple alwaysobservable provided one 
hooses a 
oordinate system or gauge that properly brings it out.We do not wish to prejudge the issue of whi
h if any version of Kaluza-Klein gravity will emerge assuperior. However, the progress of physi
s lies in explaining more phenomena on the basis of theoriesthat are 
onstrained by standards of logi
, 
on
iseness and elegan
e. In this regard, we venture theopinion that the �fth dimension will be needed.9.1 A
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