
COMPLETE PROOFS OF GÖDEL’S INCOMPLETENESS

THEOREMS

LECTURES BY B. KIM

Step 0: Preliminary Remarks

We define recursive and recursively enumerable functions and relations, enumer-
ate several of their properties, prove Gödel’s β-Function Lemma, and demonstrate
its first applications to coding techniques.

Definition. For R ⊂ ωn a relation, χR : ωn → ω, the characteristic function on
R, is given by

χR(a) =

{
1 if ¬R(a),
0 if R(a).

Definition. A function from ωm to ω (m ≥ 0) is called recursive (or com-
putable) if it is obtained by finitely many applications of the following rules:

R1. • Ini : ωn → ω, 1 ≤ i ≤ n, defined by (x1, . . . , xn) 7→ xi is recursive;
• + : ω × ω → ω and · : ω × ω → ω are recursive;
• χ< : ω × ω → ω is recursive.

R2. (Composition) For recursive functions G,H1, . . . ,Hk such thatHi : ω
n → ω

and G : ωk → ω, F : ωn → ω, defined by

F (a) = G(H1(a), . . . , Hk(a)).

is recursive.
R3. (Minimization) For G : ωn+1 → ω recursive, such that for all a ∈ ωn there

exists some x ∈ ω such that G(a, x) = 0, F : ωn → ω, defined by

F (a) = µx(G(a, x) = 0)

is recursive. (Recall that µxP (x) for a relation P is the minimal x ∈ ω such
that x ∈ P obtains.)

Definition. R(⊆ ωk) is called recursive, or computable (R is a recursive rela-
tion) if χR is a recursive function.

Proofs in this note are adaptation of those in [Sh] into the deduction system described in [E].
Many thanks to Peter Ahumada and Michael Brewer who wrote up this note.

2 LECTURES BY B. KIM

Properties of Recursive Functions and Relations:

P0. Assume σ : {1, ..., k} → {1, ..., n} is given. If G : ωk → ω is recursive, then
F : ωn → ω defined by, for a = (a1, ..., an),

F (a) = G(aσ(1), ..., aσ(k)) = G(Inσ(1)(a), ..., I
n
σ(k)(a)),

is recursive. Similarly, if P (x1, ..., xk) is recursive, then so is

R(x1, ..., xn) ≡ P (xσ(1), ..., xσ(k)).

P1. For Q ⊂ ωk a recursive relation, and H1, . . . ,Hk : ωn → ω recursive func-
tions,

P = {a ∈ ωn | Q(H1(a), . . . , Hk(a))}
is a recursive relation.

Proof. χP (a) = χQ(H1(a), . . . , Hk(a)) is a recursive function by R2.

P2. For P ⊂ ωn+1, a recursive relation such that for all a ∈ ωn there exists
some x ∈ ω such that P (a, x), then F : ωn → ω, defined by

F (a) = µxP (a, x)

is recursive.

Proof. F (a) = µx(χP (a, x) = 0), so we may apply R3.

P3. Constant functions, Cn,k : ωn → ω such that Cn,k(a) = k, are recursive.

(Hence for recursive F : ωm+n → ω or P ⊆ ωm+n, and b ∈ ωn, both the
map (x1, ..., xm) 7→ F (x1, ..., xm; b) and P (x1, ..., xm; b) ⊆ ωm are recur-
sive.)

Proof. By induction:

Cn,0(a) = µx(In+1
n+1 (a, x) = 0)

Cn,k+1(a) = µx(Cn,k(a) < x)

are recursive by R3 and P2, respectively.

P4. For Q,P ⊂ ωn, recursive relations, ¬P , P ∨ Q, and P ∧ Q are recursive.

Proof. We have that

χ¬P (a) = χ<(0, χP (a)),

χP ∨Q(a) = χP (a) · χQ(a),
P ∧ Q = ¬(¬P ∨ ¬Q).

P5. The predicates =, ≤, >, and ≥ are recursive. (Hence each finite set is
recursive.)

Proof. For a, b ∈ ω,
a = b iff ¬(a < b) ∧ ¬(b < a),

a ≥ b iff ¬(a < b),

a > b iff (a ≥ b) ∧ ¬(a = b), and

a ≤ b iff ¬(a > b),

COMPLETE PROOFS OF GÖDEL’S INCOMPLETENESS THEOREMS 3

hence these are recursive by P4.

Notation. We write, for a ∈ ωn, f : ωn → ω a function and P ⊂ ωm+1 a relation,

µx<f(a)P (x, b) ≡ µx(P (x, b) ∨ x = f(a)).

In particular, µx<f(a)P (x, b) is the smallest integer less than f(a) which satisfies
P , if such exists, or f(a), otherwise.

We also write

∃x<f(a)P (x) ≡ (µx<f(a)P (x)) < f(a), and

∀x<f(a)P (x) ≡ ¬(∃x<f(a) (¬P (x))).

The first is clearly satisfied if some x < f(a) satisfies P (x), while the second is
satisifed if all x < f(a) satisfy P (x).

P6. For P ⊂ ωn+1 a recursive relation, F : ωn+1 → ω, defined by

F (a, b) = µx<aP (x, b),

is recursive.

Proof. F (a, b) = µx(P (x, b) ∨ x = a), and thus F is recursive by P2, since
for all b, a satisfies P (x, b) ∨ x = a.

P7. For R ⊂ ωn+1 a recursive relation, P,Q ⊂ ωn+1 such that

P (a, b) ≡ ∃x<aR(x, b); Q(a, b) ≡ ∀x<aR(x, b)

are recursive. (Hence, with P1, it follows both

Div(y, z)(≡ y|z) = ∃x < z + 1(z = x · y),

and PN, the set of all prime numbers, are recursive.)

Proof. Note that P is defined by composition of recursive functions and
predicates, hence recursive by P1, and Q is defined by composition of re-
cursive functions, recursive predicates, and negation, hence recursive by P1
and P4.

P8. −̇ : ω × ω → ω, defined by

a−̇b =

{
a− b if a ≥ b,
0 otherwise,

is recursive.

Proof. Note that

a−̇b = µx(b+ x = a ∨ a < b).

4 LECTURES BY B. KIM

P9. If G1, . . . , Gk : ωn → ω are recursive functions, and R1, . . . , Rk ⊂ ωn are
recursive relations partitioning ωn (i.e., for each a ∈ ωn, there exists a
unique i such that Ri(a)), then F : ωn → ω, defined by

F (a) =

G1(a) if R1(a),

G2(a) if R2(a),
...

...

Gk(a) if Rk(a),

is recursive.

Proof. Note that

F = G1χ¬R1 + · · ·+Gkχ¬Rk
.

P10. If Q1, . . . , Qk ⊂ ωn are recursive relations, and R1, . . . , Rk ⊂ ωn are recur-
sive relations partitioning ωn, then P ⊂ ωn, defined by

P (a) iff

Q1(a) if R1(a),
...

...

Qk(a) if Rk(a),

is recursive.

Proof. Note that

χP (a) =

χQ1(a) if R1(a),
...

...

χQk
(a) if Rk(a),

is recursive by P9.

Definition. A relation P ⊂ ωn is recursively enumerable (r.e.) if there exists
some recursive relation Q ⊂ ωn+1 such that

P (a) iff ∃xQ(a, x).

Remark If a relation R ⊂ ωn is recursive, then it is recursively enumerable, since
R(a) iff ∃x(R(a) ∧ x = x).

Negation Theorem. A relation R ⊂ ωn is recursive if and only if R and ¬R are
recursively enumerable.

Proof. If R is recursive, then ¬R is recursive. Hence by above remark, both are r.e.
Now, let P and Q be recursive relations such that for a ∈ ωn, R(a) iff ∃xQ(a, x)

and ¬R(a) iff ∃xP (a, x).
Define F : ωn → ω by

F (a) = µx(Q(a, x) ∨ P (a, x)),

recursive by P2, since either R(a) or ¬R(a) must hold.
We show that

R(a) iff Q(a, F (a)).

COMPLETE PROOFS OF GÖDEL’S INCOMPLETENESS THEOREMS 5

In particular, Q(a, F (a)) implies there exists x (namely, F (a)) such that Q(a, x),
thus R(a) holds. Further, if ¬Q(a, F (a)), then P (a, F (a)), since F (a) satisfies
Q(a, x) ∨ P (a, x). Thus ¬R(a) holds.

The β-Function Lemma.

β-Function Lemma (Gödel). There is a recursive function β : ω2 → ω such that
β(a, i) ≤ a−̇1 for all a, i ∈ ω, and for any a0, a1, . . . , an−1 ∈ ω, there is an a ∈ ω
such that β(a, i) = ai for all i < n.

Remark 1. Let A = {a1, ...an} ⊆ ω ∖ {0, 1} (n ≥ 2) be a set such that any two
distinct elements of A are realtively prime. Then given non-empty subset B of A,
there is y ∈ ω such that for any a ∈ A, a|y iff a ∈ B. (y is a product of elements in
B.)

Lemma 2. If k|z for z ̸= 0, then (1 + (j + k)z, 1+ jz) are relatively prime for any
j ∈ ω.

Proof. Note that for p prime, p|z implies that p/|1 + jz. But if p|1 + (j + k)z and
p|1 + jz, then p|kz, implying p|k|z or p|z, and thus p|z, a contradiction.

Lemma 3. J : ω2 → ω, defined by J(a, b) = (a+ b)2 + (a+ 1), is one-to-one.

Proof. If a+ b < a′ + b′, then

J(a, b) = (a+b)2+a+1 ≤ (a+b)2+2(a+b)+1 = (a+b+1)2 ≤ (a′+b′)2 < J(a′, b′).

Thus if J(a, b) = J(a′, b′), then a+ b = a′ + b′, and

0 = J(a′, b′)− J(a, b) = a′ − a,

implying that a = a′ and b = b′, as desired.

Proof of β-Function Lemma. Define

β(a, i) = µx<a−̇1 (∃y<a (∃z<a (a = J(y, z) ∧Div(1 + (J(x, i) + 1) · z, y)))),

It is clear that β is recursive, and that β(a, i) ≤ a−̇1.
Given a1, . . . , an−1 ∈ ω, we want to find a ∈ ω such that β(a, i) = ai for all

i < n. Let

c = max
i<n
{J(ai, i) + 1},

and choose z ∈ ω, nonzero, such that for all j < c nonzero, j|z.
By Lemma 2, for all j, l such that 1 ≤ j < l ≤ c, (1 + jz, 1 + lz) are relatively

prime, since 0 < l − j < c implies that (l − j)|z. By Remark 1, there exists y ∈ ω
such that for all j < c,

1 + (j + 1)z | y iff j = J(ai, i) for some i < n. (∗)

Let a = J(y, z).
We note the following, for each ai:

(i) ai < y < a and z < a;
In particular, y, z < a by the definition of J , and that ai < y by (∗).

(ii) Div(1 + (J(ai, i) + 1) · z, y);
From (∗).

6 LECTURES BY B. KIM

(iii) For all x < ai, 1 + (J(x, i) + 1)z/|y;
Since J is one-to-one, x < ai implies J(x, i) ̸= J(ai, i), and for j ̸= i,

J(x, i) ̸= J(aj , j). Thus, by (∗), x does not satisfy the required predicate
for y and z as chosen above.

Since for any other y′ and z′, a = J(y, z) ̸= J(y′, z′), we have that ai is in fact
the minimal integer satisfying the predicate defining β, and thus β(a, i) = ai, as
desired.

The β-function will be the basis for various systems of coding. Our first use will
be in encoding sequences of numbers:

Definition. The sequence number of a sequence of natural numbers a1, . . . , an,
is given by

<a1, . . . , an>= µx(β(x, 0) = n ∧ β(x, 1) = a1 ∧ · · · ∧ β(x, n) = an).

Note that the map <> is defined on all sequences due to the properties of β
proved above. Further, since β is recursive, <> is recursive, and <> is one-to-one,
since

<a1, . . . , an>=<b1, . . . , bm>

implies that n = m and ai = bi for each i. Note, too, that the sequence number of
the empty sequence is

<>= µx(β(x, 0) = 0) = 0.

An important feature of our coding is that we can recover a given sequence from
its sequence number:

Definition. For each i ∈ ω, we have a function ()i : ω → ω, given by

(a)i = β(a, i).

Clearly ()i is recursive for each i. ()0 will be called the length and denoted lh.

As intended, it follows from these definitions that (< a1 . . . an >)i = ai and
lh(<a1 . . . an>) = n.

Note also that whenever a > 0, we have lh(a) < a and (a)i < a.

Definition. The relation Seq ⊂ ω is given by

Seq(a) iff ∀x < a(lh(x) ̸= lh(a) ∨ ∃i < lh(a)((x)i+1 ̸= (a)i+1).

That Seq is recursive is evident from properties enumerated above. From our
definition, it is clear that Seq(a) if and only if a is the sequence number for some
sequence (in particular, a =<(a)1, . . . , (a)lh(a)>). Note that

¬Seq(a) iff ∃x < a(lh(x) = lh(a) ∧ ∀i < lh(a)((x)i+1 = (a)i+1).

Definition. The initial sequence function Init : ω2 → ω is given by

Init(a, i) = µx(lh(x) = i ∧ ∀j < i((x)j+1 = (a)j+1).

Again, Init is evidently recursive. Note that for 1 ≤ i ≤ n,

Init(<a1, . . . , an>, i) =<a1, . . . , ai>,

as intended.

COMPLETE PROOFS OF GÖDEL’S INCOMPLETENESS THEOREMS 7

Definition. The concatenation function ∗ : ω2 → ω is given by

a ∗ b = µx(lh(x) = lh(a) + lh(b)

∧ ∀i < lh(a)((x)i+1 = (a)i+1) ∧ ∀j < lh(b)((x)lh(a)+j+1 = (b)j+1).

Note that ∗ is recursive, and that

<a1 . . . an> ∗ <b1 . . . bm>=<a1 . . . an, b1 . . . bm>,

as desired.

Definition. For F : ω × ωk → ω, we define F : ω × ωk → ω by

F (a, b) =<F (0, b), . . . , F (a− 1, b)>,

or, equivalently,

µx(lh(x) = a ∧ ∀i < a((x)i+1 = F (i, b))).

Note that F (a, b) = (F (a+1, b))a+1, thus we have that F is recursive if and only
if F is recursive.

Properties of Recursive Functions and Relations (continued):

P11. For G : ω×ω×ωn → ω a recursive function, the function F : ω×ωn → ω,
given by

F (a, b) = G(F (a, b), a, b),

is recursive. Because F (a, b) is defined in terms of values F (x, b), for x
strictly smaller than a, this inductive definition of F makes sense.

Proof. Note that

F (a, b) = G(H(a, b), a, b)

where

H(a, b) = µx(Seq(x) ∧ lh(x) = a ∧ ∀i < a((x)i+1 = G(Init(x, i), i, b)).

According to this definition, F (0, b) = G(<>, 0, b) = G(0, 0, b),

F (1, b) = G(<G(0, 0, b)>, 1, b),

and

F (2, b) = G(<G(0, 0, b), G(<G(0, 0, b)>, 1, b)>, 2, b),

showing that computation is cumbersome, but possible, for any particular value a.

P12. For G : ω×ωn → ω andH : ω×ωn → ω recursive functions, F : ω×ωn → ω
defined by

F (a, b) =

{
F (G(a, b), b) if G(a, b) < a, and

H(a, b) otherwise,

is recursive.

Proof. Note that when G(a, b) < a, we have

F (G(a, b), b) = (F (a, b))G(a,b)+1 = β(F (a, b), G(a, b) + 1) = G′(F (a, b), a, b)

with recursive G′(x, y, z) = β(x,G(y, z)+1). Thus F is recursive by P11.

8 LECTURES BY B. KIM

For most purposes, when we define a function F inductively by cases, we must
satisfy two requirements to guarantee that our function is well-defined. First, if
F (x, b) appears in a defining case involving a, we must show that x < a whenever
this case is true. Second, we must show that our base case is not defined in terms
of F . In particular, this means that we cannot use F in a defining case which is
used to compute F (0, β).

P13. Given recursive G : ωn → ω and H : ω2 × ωn → ω, F : ω × ωn → ω given
by

F (a, b) =

{
H(F (a− 1, b), a− 1, b) if a > 0, and

G(b) otherwise,

is recursive. (For example, the maps

n 7→ n! =

{
(n− 1)! · n if n > 0

1 n = 0,

(n,m) 7→ mn =

{
m(n−1) ·m if n > 0,

1 n = 0,

and

n 7→ (n+ 1)th prime =

{
µx(x > nth prime ∧ PN(x)) if n > 0

2 n = 0

are all recursive.)

Proof. Note that H(F (a− 1, b), a− 1, b) = H(β(F (a, b), a), a− 1, b) has the
form of P11.

P14. Given recursive relations Q ⊂ ωn+1 and R ⊂ ωn+1 and recursive H :
ω × ωn → ω such that H(a, b) < a whenever Q(a, b) holds, the relation
P ⊂ ωn+1, given by

P (a, b) iff

{
P (H(a, b), b) if Q(a, b),

R(a, b) otherwise,

is recursive.

Proof. Define H ′ : ω × ωn → ω by

H ′(a, b) =

{
H(a, b) if Q(a, b), and

a otherwise.

H ′ is clearly recursive. Note

χP (a, b) =

{
χP (H

′(a, b), b) if H ′(a, b) < a, and

χR(a, b) otherwise.

The following example will prove useful:

COMPLETE PROOFS OF GÖDEL’S INCOMPLETENESS THEOREMS 9

Definition. Let A ⊂ ω2 be given by

A(a, c) iff Seq(c) ∧ lh(c) = a ∧ ∀i < a((c)i+1 = 0 ∨ (c)i+1 = 1),

and let F : ω2 → ω be given by

F (a, i) =

µx(A(a, x)) if i = 0,

µx(F (a, i− 1) < x ∧A(a, x)) if 0 < i < 2a, and

0 otherwise.

Then the function bd : ω → ω is given by

bd(n) = F (n, 2n − 1).

Evidently, A, F , and bd are all recursive. In fact,

bd(n) = max{< c1c2...cn > | ci = 0 or 1}.

Step 1: Representability of Recursive Functions in Q

We define Q, a subtheory of the natural numbers, and prove the Representability
Theorem, stating that all recursive functions are representable in this subtheory.

Consider the language of natural numbers LN = {+, ·, S,<, 0}. We specify the
theory Q with the following axioms.

Q1. ∀x Sx ̸= 0.
Q2. ∀x∀y Sx = Sy → x = y.
Q3. ∀x x+ 0 = x.
Q4. ∀x∀y x+ Sy = S(x+ y).
Q5. ∀x x · 0 = 0.
Q6. ∀x∀y x · Sy = x · y + x.
Q7. ∀x ¬(x < 0).
Q8. ∀x∀y x < Sy ←→ x < y ∨ x = y.
Q9. ∀x∀y x < y ∨ x = y ∨ y < x.

Note that the natural numbers, N, are a model of the theory Q. If we add to
this theory the set of all generalizations of formulas of the form

(φx0 ∧ ∀x(φ→ φxSx))→ φ,

providing the capability for induction, we call this theory Peano Arithmetic, or PA.
Thus Q ⊂ PA, and PA ⊢ Q.

Notation. We define, for a natural number n,

n ≡ SS . . . S︸ ︷︷ ︸
n

0.

Definition. A function f : ωn → ω is representable in Q if there exists an
LN-formula φ(x1, . . . , xn, y) such that

Q ⊢ ∀y(φ(k1, . . . , kn, y)←→ y = f(k1, . . . , kn))

for all k1, . . . , kn ∈ ω. We say φ represents f in Q.

10 LECTURES BY B. KIM

Definition. A relation P ⊂ ωn is representable inQ if there exists an LN-formula
φ(x1, . . . , xn) such that for all k1, . . . , kn ∈ ω,

P (k1, . . . , kn)→ Q ⊢ φ(k1, . . . , kn)

and

¬P (k1, . . . , kn)→ Q ⊢ ¬φ(k1, . . . , kn).
Again, we say that φ represents P in Q.

To prove the Representability Theorem, we will require the following:

Lemma 1. If m = n, then Q ⊢ m = n, and if m ̸= n, then Q ⊢ ¬(m = n).

Proof. It is enough to demonstrate this for m > n. For n = 0, our result follows
from axiom Q1. Assume, then, that the result holds for k = n and all l > k. Then
we have that, for a given m > n + 1, Q ⊢ m− 1 ̸= n. By axiom Q2 we have,
Q ⊢ m− 1 ̸= n → m ̸= n+ 1. Hence we conclude that Q ⊢ m ̸= n+ 1, and the
result holds for k = n+ 1, as required.

Lemma 2. Q ⊢ m+ n = m+ n.

Proof. For n = 0, our result follows from axiom Q3. Assume, then, that the result
holds for k = n. We must show it holds for k = n + 1 as well. But Q ⊢ m + n =
m+ n, and we obtain Q ⊢ m+ n+ 1 = m+ n+ 1 by Q4.

Lemma 3. Q ⊢ m · n = m · n

Proof. For n = 0, our result follows from axiom Q5. Assume, then, that the
result holds for k = n. Then Q ⊢ m · n = mn. Applying Q6, we have that
Q ⊢ m · n+ 1 = mn+m, and applying the previous lemma, we have the result for
k = n+ 1, as required.

Lemma 4. If m < n, then Q ⊢ m < n. Further, if m ≥ n, we have Q ⊢ ¬(m < n).

Proof. For n = 0, the result follows from Q7. Assume, then, that the results hold
for k = n. We show both claims hold for k = n+ 1 as well.

First, suppose m < n + 1. Either m < n, and Q ⊢ m < n by the induction
hypothesis, or m = n, and Q ⊢ m = n by Lemma 1. In either case, by Q8 and Rule
T, we have that Q ⊢ m < n+ 1.

Second, suppose m ≥ n + 1. Then m > n and by the induction hypothesis,
Q ⊢ ¬(m < n). By Lemma 1, we also have Q ⊢ ¬(m = n). Again applying Q8 and
Rule T, we have that Q ⊢ ¬(m < n+ 1), as desired.

Lemma 5. For any relation P ⊂ ωn, P is representable in Q if and only if χP is
representable.

Proof. Assume P is representable and that φ(x1 . . . xn) represents P . Let

ψ(x, y) ≡ (φ(x) ∧ y = 0) ∨ (¬φ(x) ∧ y = 1).

We claim ψ(x, y) represents χP :
Suppose P (k1, . . . , kn) holds. Then Q ⊢ φ(k1, . . . , kn). Now since

φ(k1, . . . , kn)→ (y = 0←→ ψ(k1, . . . , kn, y))

COMPLETE PROOFS OF GÖDEL’S INCOMPLETENESS THEOREMS 11

is a tautology, we have Q ⊢ y = 0 ←→ ψ(k1, . . . , kn, y), as required. Similarly, if
¬P (k1, . . . , kn) holds, then Q ⊢ ¬φ(k1, . . . , kn), and since

⊢ ¬φ(k1, . . . , kn)→ (y = 1←→ ψ(k1, . . . , kn, y),

we obtain that Q ⊢ y = 1 ←→ ψ(k1, . . . , kn, y), as required. Thus, ψ(x, y) repre-
sents χP .

Assume now that ψ(x, y) represents χP . Then ψ(x, 0) represents P .
In particular, when P (k1, . . . , kn) holds, we have

Q ⊢ ψ(k1, . . . , kn, y)←→ y = 0.

Substitution of y by 0 yields Q ⊢ ψ(k1, . . . , kn, 0), as desired. Similarly, when
¬P (k1, . . . , kn) holds, we have

Q ⊢ ψ(k1 . . . kn, y)←→ y = 1,

and because Q ⊢ ¬(0 = 1) we may conclude Q ⊢ ¬ψ(k1 . . . kn, 0), as needed. Thus
is P representable.

Lemma 6. For a formula φ in LN,

Q ⊢ φx0 → · · · → (φxk−1 → (x < k → φ))

Proof. The proof is by induction on k. When k is 0, we have

Q ⊢ (x < 0→ φ).

This is (vacuously) true by axiom Q7. Now, assume that

Q ⊢ φx0 → . . .→ (φxk−1 → (x < k → φ)).

We must show that

Q ⊢ φx0 → · · · → (φxk → (x < k + 1→ φ)).

Equivalently, we want to show that Γ ⊢ φ where Γ = Q ∪ {φx0 , ..., φxk, x < k + 1}.
By Q8, Γ ⊢ x < k ∨ x = k. In the first case, the inductive hypothesis implies that
Γ ⊢ φ, while in the latter case, |= x = k → (φxk ←→ φ), and hence Γ ⊢ φ. By either
route, Γ proves φ.

Lemma 7. If (a) Q ⊢ ¬φxk for each k < n, and (b) Q ⊢ φxn, then for z ̸= x not
appearing in φ,

Q ⊢ (φ ∧ ∀z(z < x→ ¬φxz))←→ x = n.

Proof. We define

ψ ≡ (φ ∧ ∀z(z < x→ ¬φxz)).
Now, we obtain

|= x = n→ (ψ ←→ (φxn ∧ ∀z(z < n→ ¬φxz))). (∗)

By (a) and Lemma 6, we get

Q ⊢ x < n→ ¬φ, (∗∗)
and, applying substitution and generalization, we obtain

Q ⊢ ∀z(z < n→ ¬φxz).
Combining this with (b) and (∗), we conclude

Q ⊢ x = n→ ψ.

12 LECTURES BY B. KIM

For the reverse implication, we note that

|= ∀z(z < x→ ¬φxz)→ (n < x→ ¬φxn),

and thus (b) implies Q ⊢ ψ → ¬(n < x). Now Q∪{ψ, x < n} ⊢ φ ∧ ¬φ by (∗∗) and
the definition of ψ. Therefore Q ⊢ ψ → ¬(x < n) and by Axiom Q9 we conclude
Q ⊢ ψ → x = n.

Representability Theorem. Every recursive function or relation is representable
in Q.

Proof. It suffices to prove representability of functions having the forms enumerated
in the definition of recursiveness:

R1. Ini , +, ·, and χ<.
The latter three are representable by Lemmas 2, 3, and 4. In particular,

for +, say, we have that φ(x1, x2, y) ≡ y = x1+x2 represents + in Q, since
for any m,n ∈ ω,

Q ⊢ m+ n = m+ n,

Q ⊢ y = m+ n←→ y = m+ n,

Q ⊢ φ(m,n, y)←→ y = m+ n, and hence

Q ⊢ ∀y(φ(m,n, y)←→ y = m+ n),

as required. · and χ< are similar (with χ< making additional use of Lemma
5).
Ini is representable by φ(x1, . . . , xn, y) ≡ xi = y. In particular, for any

k1, . . . , kn ∈ ω, Ini (k1, . . . , kn) = ki, and hence

Q ⊢ φ(k1, . . . , kn, y)←→ y = ki ←→ y = Ini (k1, . . . , kn),

by our choice of φ. Generalization completes the result.
R2. F (a) = G(H1(a), . . . , Hk(a)), where G and each of theHi are representable.

Assume that G is represented in Q by φ and the Hi are represented in
Q by ψi, respectively. We show that F is represented by

α(x, y) ≡ ∃z1, . . . , zk(ψ1(x, z1) ∧ · · · ∧ ψk(x, zk) ∧ φ(z1, . . . , zk, y)).

In other word we want to show, for any a1, ..., an ∈ ω,

Q ⊢ α(a1, . . . , an, y)←→ y = G(H1(a), . . . , Hk(a)) (†)

where a = (a1...an).
Now, for Γ = Q ∪ {α(a1, . . . , an, y)}, since the ψi represent Hi, we have

that Γ ⊢ ∃z1, . . . , zk(z1 = H1(a) ∧ · · · ∧ zk = Hk(a) ∧ φ(z1, . . . , zk, y)).
Hence we have

Γ |= ∃z1, . . . , zk(φ(H1(a), . . . , Hk(a), y)),

and since the zi do not appear,

Γ |= φ(H1(a), . . . , Hk(a), y).

Since φ represents G, we have

Γ |= y = G(H1(a), . . . , Hk(a)),

as required.

COMPLETE PROOFS OF GÖDEL’S INCOMPLETENESS THEOREMS 13

On the other hand, for Σ = Q ∪ {y = G(H1(a), . . . ,Hk(a))},

Σ ⊢ φ(H1(a), . . . ,Hk(a), y)

Σ ⊢ ∃z1, . . . , zk(z1 = H1(a) ∧ · · · zk = Hk(a) ∧ φ(z1, . . . , zk, y))
Σ ⊢ ∃z1, . . . , zk(ψ1(a, zi) ∧ · · ·ψk(a, zk) ∧ φ(z1, . . . , zk, y))
Σ ⊢ α(a1, . . . , an, y)

Thus (†) is established.
R3. F (a) = µx(G(a, x) = 0), where G is representable in Q and for all a there

exists x such that G(a, x) = 0, is representable in Q.
Assume G is represented in Q by φ(x1, . . . , xn, x, y). Let

ψ(x1, . . . , xn, x) ≡ φy0 ∧ ∀z(z < x→ ¬φyx0z).
Let F (a) = b and ki = G(a, i) for i ∈ ω. Then

Q ⊢ φ(a1, . . . , an, i, y)←→ y = ki,

thus
Q ⊢ φ(a1, . . . , an, i, 0)←→ 0 = ki,

. Hence now if j < b, so that kj ̸= 0, then

Q ⊢ ¬φ(a1, . . . , an, j, 0).
On the other hand, kb = 0, so

Q ⊢ φ(a1, . . . , an, b, 0).
Hence, by Lemma 7,

Q ⊢ (φ(a, x, y)y0 ∧ ∀z(z < x→ ¬φ(a, x, y)y0
x
z))←→ x = b,

and thus,
Q ⊢ ψ(a, x)←→ x = b.

By generalization, we have that ψ represents F in Q, as desired.

Step 2: Axiomatizable Complete Theories are Decidable

We begin by showing that we may encode terms and formulas of a reasonable
language in such a way that important classes of formulas, e.g., the logical axioms,
are mapped to recursive subsets of the natural numbers. We use this to derive the
main result.

Definition. Let L be a countable language with subsets C, F, and P of constant,
function, and predicate symbols, respectively (=∈ P). Let V be a set of variables
for L. L is called reasonable if the following two functions exist:

• h : L∪{¬,→, ∀}∪V→ ω injective such that V = h(V), C = h(C), F = h(F),
and P = h(P) are all recursive.
• AR : ω → ω ∖ {0} recursive such that AR(h(f)) = n and AR(h(P)) = n
for n-ary function and predicate symbols f and P .

For the rest of this note, the language L is countable and reasonable.

Now we define a coding ⌈⌉ : {L-terms and L-formulas} → ω inductively, by

• For x ∈ V ∪ C, ⌈x⌉ =<h(x)>.

14 LECTURES BY B. KIM

• For L-terms u1, . . . , un and n-ary f ∈ F,

⌈fu1u2 . . . un⌉ =<h(f), ⌈u1⌉, ⌈u2⌉, . . . , ⌈un⌉> .

• For L-terms t1, . . . , tn and P ∈ P,

⌈Pt1t2 . . . tn⌉ =<h(P), ⌈t1⌉, . . . , ⌈tn⌉> .

• For L-formulas φ and ψ,

⌈φ→ ψ⌉ =<h(→), ⌈φ⌉, ⌈ψ⌉>,
⌈¬φ⌉ =<h(¬), ⌈φ⌉>,
⌈∀xφ⌉ =<h(∀), ⌈x⌉, ⌈φ⌉> .

Note that our definition of ⌈⌉ is one-to-one. Given a term or formula σ, we call
⌈σ⌉ the Gödel number of σ.

We show the following predicates and functions are recursive (We follow defini-
tions for syntax in [E].):

(1) Vble = {⌈v⌉ | v ∈ V} ⊂ ω and Const = {⌈c⌉ | c ∈ C} ⊂ ω.

Proof. Note

Vble(x) iff x =<(x)1> ∧V((x)1),
Const(x) iff x =<(x)1> ∧C((x)1).

(2) Term = {⌈t⌉ | t an L-term} ⊂ ω.

Proof. Note

Term(a) iff

∀j<(lh(a)−̇1)Term((a)j+2) if Seq(a) ∧ F((a)1)

∧ AR((a)1) = lh(a)−̇1,
Vble(a) ∨ Const(a) otherwise.

(3) AtF = {⌈σ⌉ | σ an atomic L-formula} ⊂ ω.

Proof. Note

AtF(a) iff Seq(a) ∧ P((a)1) ∧ (AR((a)1) = lh(a)−̇1)
∧ ∀j<(lh(a)−̇1) (Term((a)j+2)).

(4) Form = {⌈φ⌉ | φ an L-formula} ⊂ ω.

Proof. Note

Form(a) iff

Form((a)2) if a =<h(¬), (a)2>,
Form((a)2) ∧ Form((a)3) if a =<h(→), (a)2, (a)3>,

Vble((a)2) ∧ Form((a)3) if a =<h(∀), (a)2, (a)3>,
AtF (a) otherwise.

(5) Sub : ω3 → ω, such that Sub(⌈t⌉, ⌈x⌉, ⌈u⌉) = ⌈txu⌉ and Sub(⌈φ⌉, ⌈x⌉, ⌈u⌉) =
⌈φxu⌉ for terms t and u, variable x, and formula φ.

COMPLETE PROOFS OF GÖDEL’S INCOMPLETENESS THEOREMS 15

Proof. Define

Sub(a, b, c) =

c if Vble(a) ∧ a = b,

<(a)1,Sub((a)2, b, c), . . . if lh(a) > 1 ∧ (a)1 ̸= h(∀)
. . . ,Sub((a)lh(a), b, c)> ∧Seq(a),

<(a)1, (a)2,Sub((a)3, b, c)> if a =<h(∀), (a)2, (a)3>,
∧ (a)2 ̸= b

a otherwise.

Note that, if well-defined, the function has the properties desired above.
We show Sub is well-defined by induction on a: a = 0 falls into the

first or last category since lh(0) = 0, hence Sub(0, b, c) is well-defined for
all b, c ∈ ω. If a ̸= 0, then (a)i < a for all i ≤ lh(a), and thus we may
assume the values Sub((a)i, b, c) are well-defined, showing Sub(a, b, c) to be
well-defined in all cases.

(6) Free ⊂ ω2, such that for formula φ, term τ , and variable x, Free(⌈φ⌉, ⌈x⌉)
if and only if x occurs free in φ, and Free(⌈τ⌉, ⌈x⌉) if and only if x occurs
in τ

Proof. Define

Free(a, b) iff

∃j<(lh(a)−̇1) (Free((a)j+2, b)) if lh(a) > 1 ∧ (a)1 ̸= h(∀),
Free((a)3, b) ∧ (a)2 ̸= b if lh(a) > 1 ∧ (a)1 = h(∀),
a = b otherwise.

Free clearly has the desired property, and that it is well-defined follows by
essentially the same induction on a as above.

(7) Sent = {⌈φ⌉ | φ is an L-sentence} ⊂ ω.

Proof. Note

Sent(a) iff Form(a) ∧ ∀b<a (¬Vble(b) ∨ ¬Free(a, b)).

(8) Subst(a, b, c) ⊂ ω3 such that for a given formula φ, variable x, and term t,
Subst(⌈φ⌉, ⌈x⌉, ⌈t⌉) if and only if t is substitutable for x in φ.

Proof. Define

Subst(a, b, c) iff

Subst((a)2, b, c) if a =<h(¬), (a)2>,
Subst((a)2, b, c) ∧ Subst((a)3, b, c) if a =<h(→), (a)2, (a)3>,

¬Free(a, b) ∨ (¬Free(c, (a)2) if a =<h(∀), (a)2, (a)3>,
∧Subst((a)3, b, c))

0 = 0 otherwise.

Note that Subst has the desired property, and is well-defined by essentially
the same induction used above.

16 LECTURES BY B. KIM

(9) We define

False(a, b) iff

¬False((a)2, b) ∧ False((a)3, b) if a =<h(→), (a)2, (a)3>

∧Form((a)2) ∧ Form((a)3),

¬False((a)2, b) if a =<h(¬), (a)2> ∧Form((a)2),

Form(a) ∧ (b)a = 0 otherwise.

False is recursive by the same induction as applied above. We note the
significance of False presently.

To each b ∈ ω, we may associate a truth assignment vb such that for a prime
formula ψ (atomic or of the form ∀xφ),

vb(ψ) = F iff (b)⌈ψ⌉ = 0.

Further, for any truth assignment v : A→ {T,F}, where A is a finite set of prime
formulas, there exists a b such that v = vb: we may write A = {φ1, . . . , φn} such
that ⌈φ1⌉ < ⌈φ2⌉ < · · · < ⌈φn⌉. For 1 ≤ j ≤ ⌈φn⌉ define cj = 0 when j = ⌈φi⌉
for some i ≤ n and v(φi) = F , and cj = 1 otherwise. Then b = < c1, . . . , c⌈φn⌉>
satisfies vb = v on A.

Then moreover, for any formula φ built up from A,

v(φ) = F iff vb(φ) = F iff False(⌈φ⌉, b).

(10) Define Taut = {⌈σ⌉ | σis a tautology} ⊂ ω.

Proof. Recall bd : ω → ω such that bd(a) = max{ < c1, . . . , ca > | ci ∈
{0, 1}}, recursive, has been previously defined. Define

Taut(a) iff Form(a) ∧ ∀b<(bd(a) + 1) (¬False(a, b)).

(11) AG2 = {⌈φ⌉ | φ is in axiom group 2} ⊂ ω.

Proof. Recall axiom group 2 contains formulas of the form ∀xψ → ψxt , with
term t substitutable for x in ψ. Thus

AG2(a) iff ∃x, y, z<a (Vble(x) ∧ Form(y) ∧ Term(z) ∧ Subst(y, x, z)

∧ a =<h(→), <h(∀), x, y>,Sub(y, x, z)>),

where ∃x, y, z<aP (x, y, z) abbreviates what one would expect.

(12) AG3 = {⌈φ⌉ | φ is in axiom group 3} ⊂ ω.

Proof. Recall we take axiom group 3 to be the formulas having the following
form: ∀x(ψ → ψ′)→ (∀xψ → ∀xψ′). Thus

AG3(a) iff ∃x, y, z<a (Vble(x) ∧ Form(y) ∧ Form(z)

∧ a =<h(→), <h(∀), x, <h(→), y, z>>,

<h(→), <h(∀), x, y>, <h(∀), x, z>>>)

(13) AG4 = {⌈φ⌉ | φ is in axiom group 4} ⊂ ω.

COMPLETE PROOFS OF GÖDEL’S INCOMPLETENESS THEOREMS 17

Proof. Recall axiom group 4 contains formulas of the form ψ → ∀xψ, where
x does not occur free in ψ. Thus

AG4(a) iff ∃x, y<a (Vble(x) ∧ Form(y)

∧ ¬Free(y, x) ∧ a =<h(→), y, <h(∀), x, y>>)

(14) AG5 = {⌈φ⌉ | φ is in axiom group 5} ⊂ ω.

Proof. Recall axiom group 5 contains formulas of the form x = x, for a
variable x, hence

AG5(a) iff ∃x<a (Vble(x) ∧ a =<h(=), x, x>).

(15) AG6 = {⌈φ⌉ | φ is in axiom group 6} ⊂ ω.

Proof. Recall formulas of axiom group 6 have the form x = y → (ψ → ψ′),
where ψ is an atomic formula and ψ′ is obtained by from ψ by replacing
one or more occurrences of x with y. Thus

AG6(a) iff ∃x, y, b, c<a (Vble(x) ∧ Vble(y) ∧ AtF(b) ∧ AtF(c)

∧ lh(b) = lh(c) ∧ ∀j < lh(b) + 1((c)j = (b)j ∨ ((c)j = y ∧ (b)j = x))

∧ a =<h(→), <h(=), x, y>, <h(→), b, c>>)

(16) Gen(a, b) ⊂ ω2, such that Gen(⌈φ⌉, ⌈ψ⌉) if and only if φ is a generalization
of ψ (i.e., φ = ∀x1 . . . ∀xnψ for some finite {xi} ⊂ V).

Proof. Note that

Gen(a, b) iff

a =<h(∀), (a)2, (a)3> ∧Vble((a)2) ∧ Gen((a)3, b) if a > b,

0 = 0 if a = b,

0 = 1 if a < b.

(17) Λ = {⌈σ⌉ | σ ∈ Λ} ⊂ ω, where Λ is the set of logical axioms.

Proof. Note that

Λ(a) iff ∃b<a+ 1 (Form(a) ∧ Gen(a, b)

∧ (Taut(b) ∨ AG2(b) ∨ AG3(b) ∨ AG4(b) ∨ AG5(b) ∨ AG6(b)))

We have, to this point, defined three codings: <> on sequences of natural num-
bers, h on the language and logical symbols, and ⌈⌉ on the terms and formulas. We
presently define a fourth coding, of sequences of formulas:

⌈⌈⌉⌉ : {sequences of L-formulas} → ω,

given by

⌈⌈φ1, . . . , φn⌉⌉ =<⌈φ1⌉, . . . , ⌈φn⌉> .

18 LECTURES BY B. KIM

This map is one-to-one, as it is derived from the established (injective) codings,
and in particular, we can determine, for a given number, if it lies in the image of
⌈⌈⌉⌉, and, if so, recover the associated sequence of formulas.

Definition. Given L, let T be a theory (a collection of sentences) in L. Define

T = {⌈σ⌉ | σ ∈ T}.
We say that T is axiomatizable if there exists a theory S, axiomatizing T (that
is, such that CnS = CnT), such that S is recursive. We say that T is decidable
if CnT is recursive.

We shall make use of the following relations:

• DedT = {⌈⌈φ1, . . . , φn⌉⌉ | φ1, . . . , φn is a deduction from T} ⊂ ω.
Note that

DedT (a) iff Seq(a) ∧ lh(a) ̸= 0

∧∀j< lh(a) (Λ((a)j+1)∨T ((a)j+1)∨∃i, k<j+1 ((a)k+1 =<h(→), (a)i+1, (a)j+1>))

• PrfT ⊂ ω2, given by PrfT (a, b) iff DedT (b) ∧ a = (b)lh(b).
• PfT ⊂ ω, given by PfT (a) iff Sent(a) ∧ ∃xPrfT (a, x).

Note that we may read PrfT (a, b) as “b is a proof of a from T ,” and PfT (a) as
“a is a sentence provable from T .” In particular

PfT = CnT = {⌈σ⌉ | T ⊢ σ}.
We use this fact to prove the following:

Theorem. If T is axiomatizable, then PfT = CnT is recursively enumerable.

Proof. Let S axiomatize T , where S is recursive. From the above definitions, we
see that DedS and PrfS are recursive relations, hence PfS is an r.e. relation. But
PfS = PfT , since CnS = CnT .

Theorem. If T is axiomatizable and complete in L, then T is decidable.

Proof. By the negation theorem, it suffices to show that ¬PfT is recursively enu-
merable. Note that since T is complete, for any sentence σ, T ⊬ σ if and only if
T ⊢ ¬σ. Hence

¬PfT (a) iff ¬Sent(a) ∨ ∃mPrfT (<h(¬), a>,m)

iff ∃m(¬Sent(a) ∨ PrfT (<h(¬), a>,m)).

Thus ¬PfT is recursively enumerable, and PfT is recursive.

We can see that if we say T is axiomatizable in wider sense when S axiomatiz-
ing T is recursively enumerable, then the above two theorems still hold with this
seemingly weaker notion. In fact, two notions are equivalent, which is known as
Craig’s Theorem.

Step 3: The Incompleteness Theorems and Other Results

We return now to the language of natural numbers, LN. Recall that we define,
for a natural number n,

n ≡ SS . . . S︸ ︷︷ ︸
n

0.

COMPLETE PROOFS OF GÖDEL’S INCOMPLETENESS THEOREMS 19

Definition. The diagonalization of an LN formula φ is a new formula

d(φ) ≡ ∃v0(v0 = ⌈φ⌉ ∧ φ),

where ∃ and ∧ provide the usual abbreviations in LN.

In particular, we note d(φ) is satisfiable precisely when φ is satisfiable by some
truth assignment taking v0 to the Gödel number of φ, and LN |= d(φ) precisely
when φ is satisfied by every truth assignment taking v0 to ⌈φ⌉.

Lemma. There exists a recursive function dg : ω → ω such that for any LN

formula, dg(⌈φ⌉) = ⌈d(φ)⌉.

Proof. Define num : ω → ω by num(0) =<0> and, for n ∈ ω
num(n+ 1) =<h(S),num(n)> .

In particular, note that num(n) = ⌈n⌉.
Define

dg(a) =<h(¬), <h(∀), ⌈v0⌉, <h(¬),
<h(¬), <h(→), <h(=), ⌈v0⌉, num(a)>, <h(¬), a>>>>>>

Then

dg(⌈φ⌉) =<h(¬), <h(∀), ⌈v0⌉, <h(¬),
<h(¬), <h(→), <h(=), ⌈v0⌉,num(⌈φ⌉)>, <h(¬), ⌈φ⌉>>>>>>,

=<h(¬), <h(∀), ⌈v0⌉, <h(¬),
<h(¬), <h(→), <h(=), ⌈v0⌉, ⌈⌈φ⌉⌉>, <h(¬), ⌈φ⌉>>>>>> .

However, writing out what formula this encodes and introducing our usual abbre-
viations, we have

dg(⌈φ⌉) = ⌈¬∀v0¬(¬(v0 = ⌈φ⌉ → ¬φ))⌉
= ⌈∃v0(v0 = ⌈φ⌉ ∧ φ)⌉
= ⌈d(φ)⌉,

as desired.

Fixed Point Theorem (Gödel). For any LN-formula φ(x) (i.e., either a sentence
or a formula having x as the only free variable), there is some LN-sentence σ such
that

Q ⊢ σ ←→ φ(⌈σ⌉).

Proof. Since dg is recursive, it is representable in Q by Step 1, say by ψ(x, y). Then

Q ⊢ ∀y(ψ(n, y)←→ y = dg(n)).

Let δ(v0) ≡ ∃y(ψ(v0, y) ∧ φ(y)), and let n = ⌈δ(v0)⌉. Define

σ ≡ d(δ(v0)) ≡ ∃v0(v0 = n ∧ δ(v0)).
Then if we let k = dg(n) = ⌈σ⌉, we have

|= σ ←→ δ(n)←→ ∃y(ψ(n, y) ∧ φ(y)).
But

Q ⊢ ψ(n, y)←→ y = k,

20 LECTURES BY B. KIM

and therefore

Q ⊢ σ ←→ ∃y(y = k ∧ φ(y))←→ φ(k)←→ φ(⌈σ⌉),

as required.

Tarski Undefinability Theorem. ThN = {⌈σ⌉ | N |= σ} is not definable.

Proof. Suppose ThN were definable by β(x). Then by the fixed point lemma, with
φ = ¬β, there exists a sentence σ such that

N |= σ ←→ ¬β(⌈σ⌉).

Then N |= σ implies that N ̸|= β(⌈σ⌉), implying N ̸|= σ, or N |= ¬σ, since ThN

is complete. On the other hand, N ̸|= σ implies N |= ¬σ, and thus that N |=
β(⌈σ⌉), implying N |= σ. The contradictions together imply that β cannot represent

ThN.

Strong Undecidability of Q. Let T be a theory in L ⊃ LN. If T ∪Q is consistent
in L, then T is not decidable in L (CnT is not recursive).

Proof. Assume that CnT is recursive. We first show that this implies recursiveness
of Cn(T ∪Q). Since Q is finite, it suffices to show that for any sentence τ in the

language, Cn(T ∪ {τ}) is recursive.
In particular, note that α ∈ Cn(T ∪ {τ}) iff τ → α ∈ CnT . Thus

a ∈ Cn(T ∪ {τ}) iff Sent(a)∧ <h(→), ⌈τ⌉, a>∈ CnT .

Hence Cn(T ∪ {τ}) is recursive, as desired.
To prove the theorem, then, it suffices to show that Cn(T ∪Q) is not recursive.

If this were the case, then it would be representable, say by β(x), in Q. By the
fixed point lemma, there exists an LN sentence σ such that

Q ⊢ σ ←→ ¬β(⌈σ⌉).

If T ∪Q ⊢ σ, then
Q ⊢ β(⌈σ⌉),

by the representability of Cn(T ∪Q) by β(x) in Q. In particular,

Q ⊢ ¬σ,

a contradiction. On the other hand, if T ∪Q ⊬ σ, then by representability,

Q ⊢ ¬β(⌈σ⌉),

and hence

Q ⊢ σ,
a contradiction, implying that Cn(T ∪Q) is not representable, and hence not re-
cursive.

Corollary. ThN, PA, and Q are all undecidable.

Proof. We need note only that each of these theories is consistent with Q.

Moreover, we have:

COMPLETE PROOFS OF GÖDEL’S INCOMPLETENESS THEOREMS 21

Undecidability of First Order Logic (Church). For a reasonable countable
language L ⊃ LN, the set of all Gödel numbers of valid sentences ({⌈σ⌉ | ∅ ⊢ σ})
is not recursive (the set of valid sentences is not decidable).

In fact, the above corollary is true for any countable L containing a k-ary pred-
icate or function symbol, k ≥ 2, or at least two unary function symbols.

Gödel-Rosser First Incompleteness Theorem. If T is a theory in a countable
reasonable L ⊃ LN, with T ∪ Q consistent and T axiomatizable, then T is not
complete.

Proof. By Step 2, if T is complete, then T is decidable, contradicting the strong
undecidability of Q.

Remarks. In (N,+), 0, <, and S are definable. Hence the same result follows if we
take L′

N = {+, ·} instead of our usual LN. In particular, Th(N,+, ·) is undecidable,
and for any T ′ ⊃ Q′ (where Q′ is simply Q written in the language of L′

N), we have
that T ′ is, if consistent, undecidable, and, if axiomatizable, incomplete.

It is important to note that for an undecidable theory T , we may have T ⊂ T ′,
where T ′ is a decidable theory. As an example, the theory of groups is undecidable,
whereas the theory of divisible torsion-free groups is decidable.

We turn our attention now to the proof of the result used in Gödel’s original
paper. In particular, Gödel worked in the model (N,+, ·, 0, <,E). (Note that E,
exponentiation, is definable in (N,+, ·, 0, <), or, equivalently, (N,+, ·)).

Let T ⊃ Q be a consistent theory in a reasonable countable language L ⊃ LN,
and presume that T is recursive. Then

T ⊢ σ ⇒ Q ⊢ PfT (⌈σ⌉).
In particular, T ⊢ σ implies that PrfT (⌈σ⌉,m) for some m ∈ ω. Since PrfT is

recursive, it is representable in Q, hence Q ⊢ PrfT (⌈σ⌉,m), and

Q ⊢ ∃xPrfT (⌈σ⌉, x),
or

Q ⊢ PfT (⌈σ⌉).
By the fixed point lemma, there exists a sentence α such that

T ⊃ Q ⊢ α←→ ¬PfT (⌈α⌉). (∗)

If T ⊢ α, then Q ⊢ PfT (⌈α⌉), and thus Q ⊢ ¬α, and hence T ⊢ ¬α, a contradiction.
Thus T ⊬ α.

On the other hand, if T is ω-consistent (i.e., whenever T ⊢ ∃xφ(x), then for
some n ∈ ω, T ⊬ ¬φ(n)), then T ⊬ ¬α. In particular, if T ⊢ ¬α, then

T ⊢ PfT (⌈α⌉),

by (∗). That is,
T ⊢ ∃xPrfT (⌈α⌉, x).

However, if PrfT (⌈α⌉,m) for some m ∈ ω, then T ⊢ α, contradicting the consis-

tency of T . Thus we must have ¬PrfT (⌈α⌉,m) for all m ∈ ω. Since Q represents
PrfT ,

T ⊃ Q ⊢ ¬PrfT (⌈α⌉,m)

22 LECTURES BY B. KIM

for all m ∈ ω, contradicting the ω-consistency of T .
Rosser generalized Gödel’s proof by singling out for T a sentence α such that

T ⊬ α and T ⊬ ¬α, without the assumption of ω-consistency.

We now begin our approach to Gödel’s Second Incompleteness Theorem. We fix
T , a theory in a countable reasonable language L ⊃ LN.

We note the following fact from Hilbert and Bernays’ Grundlagen der Mathe-
matik, 1934.

Fact. If T is consistent, T ⊢ PA, and T is recursive, then for any sentences σ and
δ in L,

I. T ⊢ σ ⇒ Q ⊢ PfT (⌈σ⌉)
II. PA ⊢ (PfT (⌈σ⌉) ∧ PfT (⌈σ → δ⌉))→ PfT (⌈δ⌉)

III. PA ⊢ PfT (⌈σ⌉)→ PfT

(
⌈PfT (⌈σ⌉)⌉

)
Notation. We will write ConT ≡ ¬PfT (⌈0 ̸= 0⌉). Clearly ConT holds if and only
if T is consistent.

Lemma. If T ⊢ σ → δ, then PA ⊢ PfT (⌈σ⌉)→ PfT (⌈δ⌉).

Proof. If T ⊢ σ → δ, then by (I) above,

PA ⊢ PfT (⌈σ → δ⌉),

and by (II),

PA ⊢ PfT (⌈σ⌉)→ PfT (⌈δ⌉).

Gödel’s Second Incompleteness Theorem. If T is consistent, T is recursive,
and T ⊢ PA, then T ⊬ ConT .

Proof. By the fixed point lemma, there exists σ such that

Q ⊢ σ ←→ ¬PfT (⌈σ⌉). (†)

By (III), above,

PA ⊢ PfT (⌈σ⌉)→ PfT

(
⌈PfT (⌈σ⌉)⌉

)
. (‡)

And further, by Lemma, we have

PA ⊢ PfT

(
⌈PfT (⌈σ⌉)⌉

)
→ PfT (⌈¬σ⌉).

Combining this result with (‡), we have

PA ⊢ PfT (⌈σ⌉)→ PfT (⌈¬σ⌉).

Now note that ⊢ ¬σ ←→ (σ → (0 ̸= 0)). By the lemma,

PA ⊢ PfT (⌈σ⌉)→ PfT (⌈σ → (0 ̸= 0)⌉).

In particular,

PA ⊢ PfT (⌈σ⌉)→ PfT (⌈σ⌉) ∧ PfT (⌈σ → (0 ̸= 0)⌉),

hence, by (II),

PA ⊢ PfT (⌈σ⌉)→ PfT (⌈0 ̸= 0⌉),

COMPLETE PROOFS OF GÖDEL’S INCOMPLETENESS THEOREMS 23

i.e.
PA ⊢ PfT (⌈σ⌉)→ ¬ConT .

Thus PA ⊢ ConT → σ, by (†).
Now, suppose that T ⊢ ConT . Then T ⊢ σ, and hence by (I), T ⊃ Q ⊢ PfT (⌈σ⌉).

But again, by (†), this implies that T ⊢ ¬σ, a contradiction, showing that T cannot
prove its own consistency.

We remark that one may carry the proof through using only the assumption that
T is recursively enumerable.

Löb’s Theorem. Suppose T is a consistent theory in L ⊃ LN, such that T re-
cursive, and T ⊢ PA. Then for any L-sentence σ, if T ⊢ PfT (⌈σ⌉) → σ, then
T ⊢ σ.

Proof. By the fixed point lemma, there exists δ such that

Q ⊢ δ ←→ (PfT (⌈δ⌉)→ σ).

Since T ⊢ PA ⊃ Q, T proves the same result. From this we may deduce that

PA ⊢ PfT (⌈δ⌉)→ PfT (⌈σ⌉).
In particular, by our lemma, we have

PA ⊢ PfT (⌈δ⌉)→ PfT

(
⌈PfT (⌈δ⌉)→ σ⌉

)
,

and, combining this with (III) from above,

PA ⊢ PfT (⌈δ⌉)→ PfT

(
⌈PfT (⌈δ⌉)⌉

)
∧ PfT

(
⌈PfT (⌈δ⌉)→ σ⌉

)
,

and thus, by (II),
PA ⊢ PfT (⌈δ⌉)→ PfT (⌈σ⌉),

as desired.
Now assume that T ⊢ PfT (⌈σ⌉)→ σ. Then, by the above,

T ⊢ PfT (⌈δ⌉)→ σ.

By our choice of δ, this in turn implies that T ⊢ δ. By (I), we have that Q ⊢
PfT (⌈δ⌉), and hence T proves the same result, implying that T ⊢ σ, as desired.

Remark. Gödel’s Second Incompleteness Theorem in fact follows from Löb’s The-
orem. In particular, given T as in the hypotheses of both theorems, if T ⊢ ConT ,
then

T ⊢ PfT (⌈0 ̸= 0⌉)→ 0 ̸= 0.

But by Löb’s Theorem, this in turn implies that T ⊢ 0 ̸= 0, showing that such a
theory, if consistent, cannot prove its own consistency.

References

[BJ] G. S. Boolos and R. C. Jeffrey, Computability and logic.
[E] H. Enderton, A mathematical introduction to logic.
[Sh] J. R. Shoenfield, Mathematical logic.

[Sm] R. M. Smullyan, Gödel’s incompleteness theorems.

