COMPLETE PROOFS OF GÖDEL'S INCOMPLETENESS THEOREMS

LECTURES BY B. KIM

Step 0: Preliminary Remarks

We define recursive and recursively enumerable functions and relations, enumerate several of their properties, prove Gödel's β-Function Lemma, and demonstrate its first applications to coding techniques.

Definition. For $R \subset \omega^{n}$ a relation, $\chi_{R}: \omega^{n} \rightarrow \omega$, the characteristic function on R, is given by

$$
\chi_{R}(\bar{a})= \begin{cases}1 & \text { if } \neg R(\bar{a}) \\ 0 & \text { if } R(\bar{a})\end{cases}
$$

Definition. A function from ω^{m} to $\omega(m \geq 0)$ is called recursive (or computable) if it is obtained by finitely many applications of the following rules:

R1. - $I_{i}^{n}: \omega^{n} \rightarrow \omega, 1 \leq i \leq n$, defined by $\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{i}$ is recursive;

- $+: \omega \times \omega \rightarrow \omega$ and $\cdot: \omega \times \omega \rightarrow \omega$ are recursive;
- $\chi_{<}: \omega \times \omega \rightarrow \omega$ is recursive.

R2. (Composition) For recursive functions G, H_{1}, \ldots, H_{k} such that $H_{i}: \omega^{n} \rightarrow \omega$ and $G: \omega^{k} \rightarrow \omega, F: \omega^{n} \rightarrow \omega$, defined by

$$
F(\bar{a})=G\left(H_{1}(\bar{a}), \ldots, H_{k}(\bar{a})\right) .
$$

is recursive.
R3. (Minimization) For $G: \omega^{n+1} \rightarrow \omega$ recursive, such that for all $\bar{a} \in \omega^{n}$ there exists some $x \in \omega$ such that $G(\bar{a}, x)=0, F: \omega^{n} \rightarrow \omega$, defined by

$$
F(\bar{a})=\mu x(G(\bar{a}, x)=0)
$$

is recursive. (Recall that $\mu x P(x)$ for a relation P is the minimal $x \in \omega$ such that $x \in P$ obtains.)

Definition. $R\left(\subseteq \omega^{k}\right)$ is called recursive, or computable (R is a recursive relation) if χ_{R} is a recursive function.

[^0]
Properties of Recursive Functions and Relations:

P0. Assume $\sigma:\{1, \ldots, k\} \rightarrow\{1, \ldots, n\}$ is given. If $G: \omega^{k} \rightarrow \omega$ is recursive, then $F: \omega^{n} \rightarrow \omega$ defined by, for $\bar{a}=\left(a_{1}, \ldots, a_{n}\right)$,

$$
F(\bar{a})=G\left(a_{\sigma(1)}, \ldots, a_{\sigma(k)}\right)=G\left(I_{\sigma(1)}^{n}(\bar{a}), \ldots, I_{\sigma(k)}^{n}(\bar{a})\right),
$$

is recursive. Similarly, if $P\left(x_{1}, \ldots, x_{k}\right)$ is recursive, then so is

$$
R\left(x_{1}, \ldots, x_{n}\right) \equiv P\left(x_{\sigma(1)}, \ldots, x_{\sigma(k)}\right)
$$

P1. For $Q \subset \omega^{k}$ a recursive relation, and $H_{1}, \ldots, H_{k}: \omega^{n} \rightarrow \omega$ recursive functions,

$$
P=\left\{\bar{a} \in \omega^{n} \mid Q\left(H_{1}(\bar{a}), \ldots, H_{k}(\bar{a})\right)\right\}
$$

is a recursive relation.
Proof. $\chi_{P}(\bar{a})=\chi_{Q}\left(H_{1}(\bar{a}), \ldots, H_{k}(\bar{a})\right)$ is a recursive function by R2.
P2. For $P \subset \omega^{n+1}$, a recursive relation such that for all $\bar{a} \in \omega^{n}$ there exists some $x \in \omega$ such that $P(\bar{a}, x)$, then $F: \omega^{n} \rightarrow \omega$, defined by

$$
F(\bar{a})=\mu x P(\bar{a}, x)
$$

is recursive.
Proof. $F(\bar{a})=\mu x\left(\chi_{P}(\bar{a}, x)=0\right)$, so we may apply R3.
P3. Constant functions, $C_{n, k}: \omega^{n} \rightarrow \omega$ such that $C_{n, k}(\bar{a})=k$, are recursive. (Hence for recursive $F: \omega^{m+n} \rightarrow \omega$ or $P \subseteq \omega^{m+n}$, and $\bar{b} \in \omega^{n}$, both the $\operatorname{map}\left(x_{1}, \ldots, x_{m}\right) \mapsto F\left(x_{1}, \ldots, x_{m} ; \bar{b}\right)$ and $P\left(x_{1}, \ldots, x_{m} ; \bar{b}\right) \subseteq \omega^{m}$ are recursive.)
Proof. By induction:

$$
\begin{aligned}
C_{n, 0}(\bar{a}) & =\mu x\left(I_{n+1}^{n+1}(\bar{a}, x)=0\right) \\
C_{n, k+1}(\bar{a}) & =\mu x\left(C_{n, k}(\bar{a})<x\right)
\end{aligned}
$$

are recursive by R 3 and P 2 , respectively.
P4. For $Q, P \subset \omega^{n}$, recursive relations, $\neg P, P \vee Q$, and $P \wedge Q$ are recursive.
Proof. We have that

$$
\begin{aligned}
\chi_{\neg P}(\bar{a}) & =\chi_{<}\left(0, \chi_{P}(\bar{a})\right), \\
\chi_{P \vee Q}(\bar{a}) & =\chi_{P}(\bar{a}) \cdot \chi_{Q}(\bar{a}), \\
P \wedge Q & =\neg(\neg P \vee \neg Q) .
\end{aligned}
$$

P5. The predicates $=, \leq,>$, and \geq are recursive. (Hence each finite set is recursive.)

Proof. For $a, b \in \omega$,

$$
\begin{aligned}
& a=b \text { iff } \neg(a<b) \wedge \neg(b<a), \\
& a \geq b \text { iff } \neg(a<b), \\
& a>b \text { iff }(a \geq b) \wedge \neg(a=b), \text { and } \\
& a \leq b \text { iff } \neg(a>b),
\end{aligned}
$$

hence these are recursive by P 4 .
Notation. We write, for $\bar{a} \in \omega^{n}, f: \omega^{n} \rightarrow \omega$ a function and $P \subset \omega^{m+1}$ a relation,

$$
\mu x<f(\bar{a}) P(x, \bar{b}) \equiv \mu x(P(x, \bar{b}) \vee x=f(\bar{a}))
$$

In particular, $\mu x<f(\bar{a}) P(x, \bar{b})$ is the smallest integer less than $f(\bar{a})$ which satisfies P, if such exists, or $f(\bar{a})$, otherwise.

We also write

$$
\begin{aligned}
& \exists x<f(\bar{a}) P(x) \equiv(\mu x<f(\bar{a}) P(x))<f(\bar{a}), \text { and } \\
& \forall x<f(\bar{a}) P(x) \equiv \neg(\exists x<f(\bar{a})(\neg P(x))) .
\end{aligned}
$$

The first is clearly satisfied if some $x<f(\bar{a})$ satisfies $P(x)$, while the second is satisifed if all $x<f(\bar{a})$ satisfy $P(x)$.

P6. For $P \subset \omega^{n+1}$ a recursive relation, $F: \omega^{n+1} \rightarrow \omega$, defined by

$$
F(a, \bar{b})=\mu x<a P(x, \bar{b}),
$$

is recursive.
Proof. $F(a, \bar{b})=\mu x(P(x, \bar{b}) \vee x=a)$, and thus F is recursive by P2, since for all \bar{b}, a satisfies $P(x, \bar{b}) \vee x=a$.

P7. For $R \subset \omega^{n+1}$ a recursive relation, $P, Q \subset \omega^{n+1}$ such that

$$
P(a, \bar{b}) \equiv \exists x<a R(x, \bar{b}) ; \quad Q(a, \bar{b}) \equiv \forall x<a R(x, \bar{b})
$$

are recursive. (Hence, with P1, it follows both

$$
\operatorname{Div}(y, z)(\equiv y \mid z)=\exists x<z+1(z=x \cdot y)
$$

and PN, the set of all prime numbers, are recursive.)
Proof. Note that P is defined by composition of recursive functions and predicates, hence recursive by P 1 , and Q is defined by composition of recursive functions, recursive predicates, and negation, hence recursive by P1 and P4.

P8. $-: \omega \times \omega \rightarrow \omega$, defined by

$$
a \dot{-} b= \begin{cases}a-b & \text { if } a \geq b \\ 0 & \text { otherwise }\end{cases}
$$

is recursive.
Proof. Note that

$$
a \dot{-} b=\mu x(b+x=a \vee a<b)
$$

P9. If $G_{1}, \ldots, G_{k}: \omega^{n} \rightarrow \omega$ are recursive functions, and $R_{1}, \ldots, R_{k} \subset \omega^{n}$ are recursive relations partitioning ω^{n} (i.e., for each $\bar{a} \in \omega^{n}$, there exists a unique i such that $R_{i}(\bar{a})$, then $F: \omega^{n} \rightarrow \omega$, defined by

$$
F(\bar{a})= \begin{cases}G_{1}(\bar{a}) & \text { if } R_{1}(\bar{a}) \\ G_{2}(\bar{a}) & \text { if } R_{2}(\bar{a}) \\ \vdots & \vdots \\ G_{k}(\bar{a}) & \text { if } R_{k}(\bar{a})\end{cases}
$$

is recursive.
Proof. Note that

$$
F=G_{1} \chi_{\neg R_{1}}+\cdots+G_{k} \chi_{\neg R_{k}}
$$

P10. If $Q_{1}, \ldots, Q_{k} \subset \omega^{n}$ are recursive relations, and $R_{1}, \ldots, R_{k} \subset \omega^{n}$ are recursive relations partitioning ω^{n}, then $P \subset \omega^{n}$, defined by

$$
P(\bar{a}) \text { iff } \begin{cases}Q_{1}(\bar{a}) & \text { if } R_{1}(\bar{a}) \\ \vdots & \vdots \\ Q_{k}(\bar{a}) & \text { if } R_{k}(\bar{a})\end{cases}
$$

is recursive.
Proof. Note that

$$
\chi_{P}(\bar{a})= \begin{cases}\chi_{Q_{1}}(\bar{a}) & \text { if } R_{1}(\bar{a}) \\ \vdots & \vdots \\ \chi_{Q_{k}}(\bar{a}) & \text { if } R_{k}(\bar{a})\end{cases}
$$

is recursive by P9.
Definition. A relation $P \subset \omega^{n}$ is recursively enumerable (r.e.) if there exists some recursive relation $Q \subset \omega^{n+1}$ such that

$$
P(\bar{a}) \text { iff } \exists x Q(\bar{a}, x)
$$

Remark If a relation $R \subset \omega^{n}$ is recursive, then it is recursively enumerable, since $R(\bar{a})$ iff $\exists x(R(\bar{a}) \wedge x=x)$.

Negation Theorem. A relation $R \subset \omega^{n}$ is recursive if and only if R and $\neg R$ are recursively enumerable.

Proof. If R is recursive, then $\neg R$ is recursive. Hence by above remark, both are r.e.
Now, let P and Q be recursive relations such that for $\bar{a} \in \omega^{n}, R(\bar{a})$ iff $\exists x Q(\bar{a}, x)$ and $\neg R(\bar{a})$ iff $\exists x P(\bar{a}, x)$.

Define $F: \omega^{n} \rightarrow \omega$ by

$$
F(\bar{a})=\mu x(Q(\bar{a}, x) \vee P(\bar{a}, x)),
$$

recursive by P 2 , since either $R(\bar{a})$ or $\neg R(\bar{a})$ must hold.
We show that

$$
R(\bar{a}) \text { iff } Q(\bar{a}, F(\bar{a})) .
$$

In particular, $Q(\bar{a}, F(\bar{a}))$ implies there exists x (namely, $F(\bar{a}))$ such that $Q(\bar{a}, x)$, thus $R(\bar{a})$ holds. Further, if $\neg Q(\bar{a}, F(\bar{a}))$, then $P(\bar{a}, F(\bar{a}))$, since $F(\bar{a})$ satisfies $Q(\bar{a}, x) \vee P(\bar{a}, x)$. Thus $\neg R(\bar{a})$ holds.

The β-Function Lemma.

β-Function Lemma (Gödel). There is a recursive function $\beta: \omega^{2} \rightarrow \omega$ such that $\beta(a, i) \leq a \dot{-} 1$ for all $a, i \in \omega$, and for any $a_{0}, a_{1}, \ldots, a_{n-1} \in \omega$, there is an $a \in \omega$ such that $\beta(a, i)=a_{i}$ for all $i<n$.

Remark 1. Let $A=\left\{a_{1}, \ldots a_{n}\right\} \subseteq \omega \backslash\{0,1\}(n \geq 2)$ be a set such that any two distinct elements of A are realtively prime. Then given non-empty subset B of A, there is $y \in \omega$ such that for any $a \in A, a \mid y$ iff $a \in B$. (y is a product of elements in B.)

Lemma 2. If $k \mid z$ for $z \neq 0$, then $(1+(j+k) z, 1+j z)$ are relatively prime for any $j \in \omega$.

Proof. Note that for p prime, $p \mid z$ implies that $p \nmid 1+j z$. But if $p \mid 1+(j+k) z$ and $p \mid 1+j z$, then $p \mid k z$, implying $p|k| z$ or $p \mid z$, and thus $p \mid z$, a contradiction.

Lemma 3. $J: \omega^{2} \rightarrow \omega$, defined by $J(a, b)=(a+b)^{2}+(a+1)$, is one-to-one.
Proof. If $a+b<a^{\prime}+b^{\prime}$, then
$J(a, b)=(a+b)^{2}+a+1 \leq(a+b)^{2}+2(a+b)+1=(a+b+1)^{2} \leq\left(a^{\prime}+b^{\prime}\right)^{2}<J\left(a^{\prime}, b^{\prime}\right)$.
Thus if $J(a, b)=J\left(a^{\prime}, b^{\prime}\right)$, then $a+b=a^{\prime}+b^{\prime}$, and

$$
0=J\left(a^{\prime}, b^{\prime}\right)-J(a, b)=a^{\prime}-a,
$$

implying that $a=a^{\prime}$ and $b=b^{\prime}$, as desired.
Proof of β-Function Lemma. Define

$$
\beta(a, i)=\mu x<a \dot{-} 1(\exists y<a(\exists z<a(a=J(y, z) \wedge \operatorname{Div}(1+(J(x, i)+1) \cdot z, y))))
$$

It is clear that β is recursive, and that $\beta(a, i) \leq a \dot{-1}$.
Given $a_{1}, \ldots, a_{n-1} \in \omega$, we want to find $a \in \omega$ such that $\beta(a, i)=a_{i}$ for all $i<n$. Let

$$
c=\max _{i<n}\left\{J\left(a_{i}, i\right)+1\right\},
$$

and choose $z \in \omega$, nonzero, such that for all $j<c$ nonzero, $j \mid z$.
By Lemma 2, for all j, l such that $1 \leq j<l \leq c,(1+j z, 1+l z)$ are relatively prime, since $0<l-j<c$ implies that $(l-j) \mid z$. By Remark 1, there exists $y \in \omega$ such that for all $j<c$,

$$
\begin{equation*}
1+(j+1) z \mid y \text { iff } j=J\left(a_{i}, i\right) \text { for some } i<n \tag{*}
\end{equation*}
$$

Let $a=J(y, z)$.
We note the following, for each a_{i} :
(i) $a_{i}<y<a$ and $z<a$;

In particular, $y, z<a$ by the definition of J, and that $a_{i}<y$ by $(*)$.
(ii) $\operatorname{Div}\left(1+\left(J\left(a_{i}, i\right)+1\right) \cdot z, y\right)$;

From (*).
(iii) For all $x<a_{i}, 1+(J(x, i)+1) z \nmid y$;

Since J is one-to-one, $x<a_{i}$ implies $J(x, i) \neq J\left(a_{i}, i\right)$, and for $j \neq i$, $J(x, i) \neq J\left(a_{j}, j\right)$. Thus, by $(*), x$ does not satisfy the required predicate for y and z as chosen above.
Since for any other y^{\prime} and $z^{\prime}, a=J(y, z) \neq J\left(y^{\prime}, z^{\prime}\right)$, we have that a_{i} is in fact the minimal integer satisfying the predicate defining β, and thus $\beta(a, i)=a_{i}$, as desired.

The β-function will be the basis for various systems of coding. Our first use will be in encoding sequences of numbers:

Definition. The sequence number of a sequence of natural numbers a_{1}, \ldots, a_{n}, is given by

$$
<a_{1}, \ldots, a_{n}>=\mu x\left(\beta(x, 0)=n \wedge \beta(x, 1)=a_{1} \wedge \cdots \wedge \beta(x, n)=a_{n}\right)
$$

Note that the map $<>$ is defined on all sequences due to the properties of β proved above. Further, since β is recursive, $<>$ is recursive, and $<>$ is one-to-one, since

$$
<a_{1}, \ldots, a_{n}>=<b_{1}, \ldots, b_{m}>
$$

implies that $n=m$ and $a_{i}=b_{i}$ for each i. Note, too, that the sequence number of the empty sequence is

$$
<>=\mu x(\beta(x, 0)=0)=0 .
$$

An important feature of our coding is that we can recover a given sequence from its sequence number:

Definition. For each $i \in \omega$, we have a function ()$_{i}: \omega \rightarrow \omega$, given by

$$
(a)_{i}=\beta(a, i) .
$$

Clearly ()$_{i}$ is recursive for each i. ($)_{0}$ will be called the length and denoted $l h$.
As intended, it follows from these definitions that $\left.\left(<a_{1} \ldots a_{n}\right\rangle\right)_{i}=a_{i}$ and $\operatorname{lh}\left(<a_{1} \ldots a_{n}>\right)=n$.

Note also that whenever $a>0$, we have $l h(a)<a$ and $(a)_{i}<a$.
Definition. The relation $S e q \subset \omega$ is given by

$$
\operatorname{Seq}(a) \text { iff } \forall x<a\left(\operatorname{lh}(x) \neq \operatorname{lh}(a) \vee \exists i<\operatorname{lh}(a)\left((x)_{i+1} \neq(a)_{i+1}\right) .\right.
$$

That $S e q$ is recursive is evident from properties enumerated above. From our definition, it is clear that $\operatorname{Seq}(a)$ if and only if a is the sequence number for some sequence (in particular, $a=<(a)_{1}, \ldots,(a)_{\operatorname{lh}(a)}>$). Note that

$$
\neg S e q(a) \text { iff } \exists x<a\left(\operatorname{lh}(x)=\operatorname{lh}(a) \wedge \forall i<\operatorname{lh}(a)\left((x)_{i+1}=(a)_{i+1}\right)\right.
$$

Definition. The initial sequence function Init: $\omega^{2} \rightarrow \omega$ is given by

$$
\operatorname{Init}(a, i)=\mu x\left(\operatorname{lh}(x)=i \wedge \forall j<i\left((x)_{j+1}=(a)_{j+1}\right)\right.
$$

Again, Init is evidently recursive. Note that for $1 \leq i \leq n$,

$$
\operatorname{Init}\left(<a_{1}, \ldots, a_{n}>, i\right)=<a_{1}, \ldots, a_{i}>
$$

as intended.

Definition. The concatenation function $*: \omega^{2} \rightarrow \omega$ is given by

$$
\begin{aligned}
a * b=\mu x & (\operatorname{lh}(x)=\operatorname{lh}(a)+\operatorname{lh}(b) \\
& \wedge \forall i<\operatorname{lh}(a)\left((x)_{i+1}=(a)_{i+1}\right) \wedge \forall j<\operatorname{lh}(b)\left((x)_{l h(a)+j+1}=(b)_{j+1}\right) .
\end{aligned}
$$

Note that * is recursive, and that

$$
<a_{1} \ldots a_{n}>*<b_{1} \ldots b_{m}>=<a_{1} \ldots a_{n}, b_{1} \ldots b_{m}>
$$

as desired.
Definition. For $F: \omega \times \omega^{k} \rightarrow \omega$, we define $\bar{F}: \omega \times \omega^{k} \rightarrow \omega$ by

$$
\bar{F}(a, \bar{b})=<F(0, \bar{b}), \ldots, F(a-1, \bar{b})>
$$

or, equivalently,

$$
\mu x\left(\operatorname{lh}(x)=a \wedge \forall i<a\left((x)_{i+1}=F(i, \bar{b})\right)\right) .
$$

Note that $F(a, \bar{b})=(\bar{F}(a+1, \bar{b}))_{a+1}$, thus we have that \bar{F} is recursive if and only if F is recursive.

Properties of Recursive Functions and Relations (continued):

P11. For $G: \omega \times \omega \times \omega^{n} \rightarrow \omega$ a recursive function, the function $F: \omega \times \omega^{n} \rightarrow \omega$, given by

$$
F(a, \bar{b})=G(\bar{F}(a, \bar{b}), a, \bar{b}),
$$

is recursive. Because $\bar{F}(a, \bar{b})$ is defined in terms of values $F(x, \bar{b})$, for x strictly smaller than a, this inductive definition of F makes sense.

Proof. Note that

$$
F(a, \bar{b})=G(H(a, \bar{b}), a, \bar{b})
$$

where

$$
H(a, \bar{b})=\mu x\left(\operatorname{Seq}(x) \wedge \operatorname{lh}(x)=a \wedge \forall i<a\left((x)_{i+1}=G(\operatorname{Init}(x, i), i, \bar{b})\right) .\right.
$$

According to this definition, $F(0, \bar{b})=G(<>, 0, \bar{b})=G(0,0, \bar{b})$,

$$
F(1, \bar{b})=G(<G(0,0, \bar{b})>, 1, \bar{b}),
$$

and

$$
F(2, \bar{b})=G(<G(0,0, \bar{b}), G(<G(0,0, \bar{b})>, 1, \bar{b})>, 2, \bar{b})
$$

showing that computation is cumbersome, but possible, for any particular value a.
P12. For $G: \omega \times \omega^{n} \rightarrow \omega$ and $H: \omega \times \omega^{n} \rightarrow \omega$ recursive functions, $F: \omega \times \omega^{n} \rightarrow \omega$ defined by

$$
F(a, \bar{b})= \begin{cases}F(G(a, \bar{b}), \bar{b}) & \text { if } G(a, \bar{b})<a, \text { and } \\ H(a, \bar{b}) & \text { otherwise }\end{cases}
$$

is recursive.
Proof. Note that when $G(a, \bar{b})<a$, we have

$$
F(G(a, \bar{b}), \bar{b})=(\bar{F}(a, \bar{b}))_{G(a, \bar{b})+1}=\beta(\bar{F}(a, \bar{b}), G(a, \bar{b})+1)=G^{\prime}(\bar{F}(a, \bar{b}), a, \bar{b})
$$

with recursive $G^{\prime}(x, y, \bar{z})=\beta(x, G(y, \bar{z})+1)$. Thus F is recursive by P 11 .

For most purposes, when we define a function F inductively by cases, we must satisfy two requirements to guarantee that our function is well-defined. First, if $F(x, \bar{b})$ appears in a defining case involving a, we must show that $x<a$ whenever this case is true. Second, we must show that our base case is not defined in terms of F. In particular, this means that we cannot use F in a defining case which is used to compute $F(0, \beta)$.

P13. Given recursive $G: \omega^{n} \rightarrow \omega$ and $H: \omega^{2} \times \omega^{n} \rightarrow \omega, F: \omega \times \omega^{n} \rightarrow \omega$ given by

$$
F(a, \bar{b})= \begin{cases}H(F(a-1, \bar{b}), a-1, \bar{b}) & \text { if } a>0, \text { and } \\ G(\bar{b}) & \text { otherwise },\end{cases}
$$

is recursive. (For example, the maps

$$
\begin{gathered}
n \mapsto n!= \begin{cases}(n-1)!\cdot n & \text { if } n>0 \\
1 & n=0\end{cases} \\
(n, m) \mapsto m^{n}= \begin{cases}m^{(n-1)} \cdot m & \text { if } n>0 \\
1 & n=0,\end{cases}
\end{gathered}
$$

and

$$
n \mapsto(n+1)^{\text {th }} \text { prime }= \begin{cases}\mu x\left(x>n^{\text {th }} \text { prime } \wedge \operatorname{PN}(x)\right) & \text { if } n>0 \\ 2 & n=0\end{cases}
$$

are all recursive.)
Proof. Note that $H(F(a-1, \bar{b}), a-1, \bar{b})=H(\beta(\bar{F}(a, \bar{b}), a), a-1, \bar{b})$ has the form of P11.

P14. Given recursive relations $Q \subset \omega^{n+1}$ and $R \subset \omega^{n+1}$ and recursive H : $\omega \times \omega^{n} \rightarrow \omega$ such that $H(a, \bar{b})<a$ whenever $Q(a, \bar{b})$ holds, the relation $P \subset \omega^{n+1}$, given by

$$
P(a, \bar{b}) \text { iff } \begin{cases}P(H(a, \bar{b}), \bar{b}) & \text { if } Q(a, \bar{b}) \\ R(a, \bar{b}) & \text { otherwise }\end{cases}
$$

is recursive.
Proof. Define $H^{\prime}: \omega \times \omega^{n} \rightarrow \omega$ by

$$
H^{\prime}(a, \bar{b})= \begin{cases}H(a, \bar{b}) & \text { if } Q(a, \bar{b}), \text { and } \\ a & \text { otherwise }\end{cases}
$$

H^{\prime} is clearly recursive. Note

$$
\chi_{P}(a, \bar{b})= \begin{cases}\chi_{P}\left(H^{\prime}(a, \bar{b}), \bar{b}\right) & \text { if } H^{\prime}(a, \bar{b})<a, \text { and } \\ \chi_{R}(a, \bar{b}) & \text { otherwise. }\end{cases}
$$

The following example will prove useful:

Definition. Let $A \subset \omega^{2}$ be given by

$$
A(a, c) \text { iff } \operatorname{Seq}(c) \wedge l h(c)=a \wedge \forall i<a\left((c)_{i+1}=0 \vee(c)_{i+1}=1\right)
$$

and let $F: \omega^{2} \rightarrow \omega$ be given by

$$
F(a, i)= \begin{cases}\mu x(A(a, x)) & \text { if } i=0 \\ \mu x(F(a, i-1)<x \wedge A(a, x)) & \text { if } 0<i<2^{a}, \text { and } \\ 0 & \text { otherwise }\end{cases}
$$

Then the function $b d: \omega \rightarrow \omega$ is given by

$$
b d(n)=F\left(n, 2^{n}-1\right)
$$

Evidently, A, F, and $b d$ are all recursive. In fact,

$$
b d(n)=\max \left\{<c_{1} c_{2} \ldots c_{n}>\mid c_{i}=0 \text { or } 1\right\}
$$

Step 1: Representability of Recursive Functions in Q

We define Q, a subtheory of the natural numbers, and prove the Representability Theorem, stating that all recursive functions are representable in this subtheory.

Consider the language of natural numbers $\mathcal{L}_{\mathcal{N}}=\{+, \cdot, S,<, 0\}$. We specify the theory Q with the following axioms.

Q1. $\forall x \quad S x \neq 0$.
Q2. $\forall x \forall y \quad S x=S y \rightarrow x=y$.
Q3. $\forall x \quad x+0=x$.
Q4. $\forall x \forall y x+S y=S(x+y)$.
Q5. $\forall x \quad x \cdot 0=0$.
Q6. $\forall x \forall y \quad x \cdot S y=x \cdot y+x$.
Q7. $\forall x \neg(x<0)$.
Q8. $\forall x \forall y \quad x<S y \longleftrightarrow x<y \vee x=y$.
Q9. $\forall x \forall y \quad x<y \vee x=y \vee y<x$.
Note that the natural numbers, \mathcal{N}, are a model of the theory Q. If we add to this theory the set of all generalizations of formulas of the form

$$
\left(\varphi_{0}^{x} \wedge \forall x\left(\varphi \rightarrow \varphi_{S x}^{x}\right)\right) \rightarrow \varphi
$$

providing the capability for induction, we call this theory Peano Arithmetic, or $P A$. Thus $Q \subset P A$, and $P A \vdash Q$.

Notation. We define, for a natural number n,

$$
\underline{n} \equiv \underbrace{S S \ldots S}_{n} 0 .
$$

Definition. A function $f: \omega^{n} \rightarrow \omega$ is representable in Q if there exists an $\mathcal{L}_{\mathcal{N}}$-formula $\varphi\left(x_{1}, \ldots, x_{n}, y\right)$ such that

$$
Q \vdash \forall y\left(\varphi\left(\underline{k_{1}}, \ldots, \underline{k_{n}}, y\right) \longleftrightarrow y=\underline{f\left(k_{1}, \ldots, k_{n}\right)}\right)
$$

for all $k_{1}, \ldots, k_{n} \in \omega$. We say φ represents f in Q.

Definition. A relation $P \subset \omega^{n}$ is representable in Q if there exists an $\mathcal{L}_{\mathcal{N}-\text {-formula }}$ $\varphi\left(x_{1}, \ldots, x_{n}\right)$ such that for all $k_{1}, \ldots, k_{n} \in \omega$,

$$
P\left(k_{1}, \ldots, k_{n}\right) \rightarrow Q \vdash \varphi\left(\underline{k_{1}}, \ldots, \underline{k_{n}}\right)
$$

and

$$
\neg P\left(k_{1}, \ldots, k_{n}\right) \rightarrow Q \vdash \neg \varphi\left(\underline{k_{1}}, \ldots, \underline{k_{n}}\right) .
$$

Again, we say that φ represents P in Q.
To prove the Representability Theorem, we will require the following:
Lemma 1. If $m=n$, then $Q \vdash \underline{m}=\underline{n}$, and if $m \neq n$, then $Q \vdash \neg(\underline{m}=\underline{n})$.
Proof. It is enough to demonstrate this for $m>n$. For $n=0$, our result follows from axiom Q1. Assume, then, that the result holds for $k=n$ and all $l>k$. Then we have that, for a given $m>n+1, Q \vdash \underline{m-1} \neq \underline{n}$. By axiom Q 2 we have, $Q \vdash \underline{m-1} \neq \underline{n} \rightarrow \underline{m} \neq \underline{n+1}$. Hence we conclude that $Q \vdash \underline{m} \neq \underline{n+1}$, and the result holds for $k=n+1$, as required.

Lemma 2. $Q \vdash \underline{m}+\underline{n}=\underline{m+n}$.
Proof. For $n=0$, our result follows from axiom Q3. Assume, then, that the result holds for $k=n$. We must show it holds for $k=n+1$ as well. But $Q \vdash \underline{m}+\underline{n}=$ $\underline{m+n}$, and we obtain $Q \vdash \underline{m}+\underline{n+1}=\underline{m+n+1}$ by Q4.

Lemma 3. $Q \vdash \underline{m} \cdot \underline{n}=\underline{m} \cdot n$
Proof. For $n=0$, our result follows from axiom Q5. Assume, then, that the result holds for $k=n$. Then $Q \vdash \underline{m} \cdot \underline{n}=\underline{m n}$. Applying Q6, we have that $Q \vdash \underline{m} \cdot \underline{n+1}=\underline{m n}+\underline{m}$, and applying the previous lemma, we have the result for $k=n+1$, as required.

Lemma 4. If $m<n$, then $Q \vdash \underline{m}<\underline{n}$. Further, if $m \geq n$, we have $Q \vdash \neg(\underline{m}<\underline{n})$.
Proof. For $n=0$, the result follows from Q7. Assume, then, that the results hold for $k=n$. We show both claims hold for $k=n+1$ as well.

First, suppose $m<n+1$. Either $m<n$, and $Q \vdash \underline{m}<\underline{n}$ by the induction hypothesis, or $m=n$, and $Q \vdash \underline{m}=\underline{n}$ by Lemma 1. In either case, by Q8 and Rule T, we have that $Q \vdash \underline{m}<\underline{n+1}$.

Second, suppose $m \geq n+1$. Then $m>n$ and by the induction hypothesis, $Q \vdash \neg(\underline{m}<\underline{n})$. By Lemma 1, we also have $Q \vdash \neg(\underline{m}=\underline{n})$. Again applying Q8 and Rule T, we have that $Q \vdash \neg(\underline{m}<\underline{n+1})$, as desired.

Lemma 5. For any relation $P \subset \omega^{n}, P$ is representable in Q if and only if χ_{P} is representable.

Proof. Assume P is representable and that $\varphi\left(x_{1} \ldots x_{n}\right)$ represents P. Let

$$
\psi(\bar{x}, y) \equiv(\varphi(\bar{x}) \wedge y=0) \vee(\neg \varphi(\bar{x}) \wedge y=\underline{1})
$$

We claim $\psi(\bar{x}, y)$ represents χ_{P} :
Suppose $P\left(k_{1}, \ldots, k_{n}\right)$ holds. Then $Q \vdash \varphi\left(\underline{k_{1}}, \ldots, \underline{k_{n}}\right)$. Now since

$$
\varphi\left(\underline{k_{1}}, \ldots, \underline{k_{n}}\right) \rightarrow\left(y=0 \longleftrightarrow \psi\left(\underline{k_{1}}, \ldots, \underline{k_{n}}, y\right)\right)
$$

is a tautology, we have $Q \vdash y=0 \longleftrightarrow \psi\left(\underline{k_{1}}, \ldots, \underline{k_{n}}, y\right)$, as required. Similarly, if $\neg P\left(k_{1}, \ldots, k_{n}\right)$ holds, then $Q \vdash \neg \varphi\left(\underline{k_{1}}, \ldots, \underline{k_{n}}\right)$, and since

$$
\vdash \neg \varphi\left(\underline{k_{1}}, \ldots, \underline{k_{n}}\right) \rightarrow\left(y=\underline{1} \longleftrightarrow \psi\left(\underline{k_{1}}, \ldots, \underline{k_{n}}, y\right)\right.
$$

we obtain that $Q \vdash y=\underline{1} \longleftrightarrow \psi\left(\underline{k_{1}}, \ldots, \underline{k_{n}}, y\right)$, as required. Thus, $\psi(\bar{x}, y)$ represents χ_{P}.

Assume now that $\psi(\bar{x}, y)$ represents χ_{P}. Then $\psi(\bar{x}, 0)$ represents P.
In particular, when $P\left(k_{1}, \ldots, k_{n}\right)$ holds, we have

$$
Q \vdash \psi\left(\underline{k_{1}}, \ldots, \underline{k_{n}}, y\right) \longleftrightarrow y=0 .
$$

Substitution of y by 0 yields $Q \vdash \psi\left(\underline{k_{1}}, \ldots, \underline{k_{n}}, 0\right)$, as desired. Similarly, when $\neg P\left(k_{1}, \ldots, k_{n}\right)$ holds, we have

$$
Q \vdash \psi\left(\underline{k_{1}} \ldots \underline{k_{n}}, y\right) \longleftrightarrow y=\underline{1},
$$

and because $Q \vdash \neg(0=\underline{1})$ we may conclude $Q \vdash \neg \psi\left(\underline{k_{1}} \ldots \underline{k_{n}}, 0\right)$, as needed. Thus is P representable.

Lemma 6. For a formula φ in $\mathcal{L}_{\mathcal{N}}$,

$$
Q \vdash \varphi_{0}^{x} \rightarrow \cdots \rightarrow\left(\varphi_{\underline{k-1}}^{x} \rightarrow(x<\underline{k} \rightarrow \varphi)\right)
$$

Proof. The proof is by induction on k. When k is 0 , we have

$$
Q \vdash(x<0 \rightarrow \varphi) .
$$

This is (vacuously) true by axiom Q7. Now, assume that

$$
Q \vdash \varphi_{0}^{x} \rightarrow \ldots \rightarrow\left(\varphi_{\underline{k-1}}^{x} \rightarrow(x<\underline{k} \rightarrow \varphi)\right) .
$$

We must show that

$$
Q \vdash \varphi_{0}^{x} \rightarrow \cdots \rightarrow\left(\varphi_{\underline{k}}^{x} \rightarrow(x<\underline{k+1} \rightarrow \varphi)\right) .
$$

Equivalently, we want to show that $\Gamma \vdash \varphi$ where $\Gamma=Q \cup\left\{\varphi_{0}^{x}, \ldots, \varphi_{\underline{k}}^{x}, x<\underline{k+1}\right\}$. By Q8, $\Gamma \vdash x<\underline{k} \vee x=\underline{k}$. In the first case, the inductive hypothesis implies that $\Gamma \vdash \varphi$, while in the latter case, $\models x=\underline{k} \rightarrow\left(\varphi_{\underline{k}}^{x} \longleftrightarrow \varphi\right)$, and hence $\Gamma \vdash \varphi$. By either route, Γ proves φ.
Lemma 7. If (a) $Q \vdash \neg \varphi_{\underline{k}}^{x}$ for each $k<n$, and (b) $Q \vdash \varphi_{\underline{n}}^{x}$, then for $z \neq x$ not appearing in φ,

$$
Q \vdash\left(\varphi \wedge \forall z\left(z<x \rightarrow \neg \varphi_{z}^{x}\right)\right) \longleftrightarrow x=\underline{n} .
$$

Proof. We define

$$
\psi \equiv\left(\varphi \wedge \forall z\left(z<x \rightarrow \neg \varphi_{z}^{x}\right)\right)
$$

Now, we obtain

$$
\begin{equation*}
\models x=\underline{n} \rightarrow\left(\psi \longleftrightarrow\left(\varphi_{\underline{n}}^{x} \wedge \forall z\left(z<\underline{n} \rightarrow \neg \varphi_{z}^{x}\right)\right)\right) \tag{*}
\end{equation*}
$$

By (a) and Lemma 6, we get

$$
\begin{equation*}
Q \vdash x<\underline{n} \rightarrow \neg \varphi, \tag{**}
\end{equation*}
$$

and, applying substitution and generalization, we obtain

$$
Q \vdash \forall z\left(z<\underline{n} \rightarrow \neg \varphi_{z}^{x}\right) .
$$

Combining this with (b) and $(*)$, we conclude

$$
Q \vdash x=\underline{n} \rightarrow \psi .
$$

For the reverse implication, we note that

$$
\vDash \forall z\left(z<x \rightarrow \neg \varphi_{z}^{x}\right) \rightarrow\left(\underline{n}<x \rightarrow \neg \varphi_{\underline{n}}^{x}\right),
$$

and thus (b) implies $Q \vdash \psi \rightarrow \neg(\underline{n}<x)$. Now $Q \cup\{\psi, x<\underline{n}\} \vdash \varphi \wedge \neg \varphi$ by $(* *)$ and the definition of ψ. Therefore $Q \vdash \psi \rightarrow \neg(x<\underline{n})$ and by Axiom Q9 we conclude $Q \vdash \psi \rightarrow x=\underline{n}$.

Representability Theorem. Every recursive function or relation is representable in Q.

Proof. It suffices to prove representability of functions having the forms enumerated in the definition of recursiveness:

R1. $I_{i}^{n},+, \cdot$, and $\chi_{<}$.
The latter three are representable by Lemmas 2, 3, and 4. In particular, for + , say, we have that $\varphi\left(x_{1}, x_{2}, y\right) \equiv y=x_{1}+x_{2}$ represents + in Q, since for any $m, n \in \omega$,

$$
\begin{aligned}
& Q \vdash \underline{m}+\underline{n}=\underline{m+n}, \\
& Q \vdash y=\underline{m}+\underline{n} \longleftrightarrow y=\underline{m+n}, \\
& Q \vdash \varphi(\underline{m}, \underline{n}, y) \longleftrightarrow y=\underline{m+n}, \text { and hence } \\
& Q \vdash \forall y(\varphi(\underline{m}, \underline{n}, y) \longleftrightarrow y=\underline{m+n}),
\end{aligned}
$$

as required. • and $\chi_{<}$are similar (with $\chi_{<}$making additional use of Lemma 5).
I_{i}^{n} is representable by $\varphi\left(x_{1}, \ldots, x_{n}, y\right) \equiv x_{i}=y$. In particular, for any $k_{1}, \ldots, k_{n} \in \omega, I_{i}^{n}\left(k_{1}, \ldots, k_{n}\right)=k_{i}$, and hence

$$
Q \vdash \varphi\left(\underline{k_{1}}, \ldots, \underline{k_{n}}, y\right) \longleftrightarrow y=\underline{k_{i}} \longleftrightarrow y=\underline{I_{i}^{n}\left(k_{1}, \ldots, k_{n}\right)},
$$

by our choice of φ. Generalization completes the result.
R2. $F(\bar{a})=G\left(H_{1}(\bar{a}), \ldots, H_{k}(\bar{a})\right)$, where G and each of the H_{i} are representable.
Assume that G is represented in Q by φ and the H_{i} are represented in Q by ψ_{i}, respectively. We show that F is represented by
$\alpha(\bar{x}, y) \equiv \exists z_{1}, \ldots, z_{k}\left(\psi_{1}\left(\bar{x}, z_{1}\right) \wedge \cdots \wedge \psi_{k}\left(\bar{x}, z_{k}\right) \wedge \varphi\left(z_{1}, \ldots, z_{k}, y\right)\right)$.
In other word we want to show, for any $a_{1}, \ldots, a_{n} \in \omega$,

$$
Q \vdash \alpha\left(\underline{a_{1}}, \ldots, \underline{a_{n}}, y\right) \longleftrightarrow y=\underline{G\left(H_{1}(\bar{a}), \ldots, H_{k}(\bar{a})\right)}
$$

where $\bar{a}=\left(a_{1} \ldots a_{n}\right)$.
Now, for $\Gamma=Q \cup\left\{\alpha\left(\underline{a_{1}}, \ldots, \underline{a_{n}}, y\right)\right\}$, since the ψ_{i} represent H_{i}, we have that $\Gamma \vdash \exists z_{1}, \ldots, z_{k}\left(z_{1}=\underline{H_{1}(\bar{a})} \wedge \cdots \wedge z_{k}=\underline{H_{k}(\bar{a})} \wedge \varphi\left(z_{1}, \ldots, z_{k}, y\right)\right)$. Hence we have

$$
\Gamma \models \exists z_{1}, \ldots, z_{k}\left(\varphi\left(\underline{H_{1}(\bar{a})}, \ldots, \underline{H_{k}(\bar{a})}, y\right)\right),
$$

and since the z_{i} do not appear,

$$
\Gamma \vDash \varphi\left(\underline{H_{1}(\bar{a})}, \ldots, \underline{H_{k}(\bar{a})}, y\right) .
$$

Since φ represents G, we have

$$
\Gamma \models y=\underline{G\left(H_{1}(\bar{a}), \ldots, H_{k}(\bar{a})\right)},
$$

as required.

On the other hand, for $\Sigma=Q \cup\left\{y=\underline{G\left(H_{1}(\bar{a}), \ldots, H_{k}(\bar{a})\right)}\right\}$,
$\Sigma \vdash \varphi\left(\underline{H_{1}(\bar{a})}, \ldots, \underline{H_{k}(\bar{a})}, y\right)$
$\Sigma \vdash \exists z_{1}, \ldots, z_{k}\left(z_{1}=\underline{H_{1}(\bar{a})} \wedge \cdots z_{k}=\underline{H_{k}(\bar{a})} \wedge \varphi\left(z_{1}, \ldots, z_{k}, y\right)\right)$
$\Sigma \vdash \exists z_{1}, \ldots, z_{k}\left(\psi_{1}\left(\bar{a}, z_{i}\right) \wedge \cdots \psi_{k}\left(\bar{a}, z_{k}\right) \wedge \varphi\left(z_{1}, \ldots, z_{k}, y\right)\right)$
$\Sigma \vdash \alpha\left(\underline{a_{1}}, \ldots, \underline{a_{n}}, y\right)$
Thus (\dagger) is established.
R3. $F(\bar{a})=\mu x(G(\bar{a}, x)=0)$, where G is representable in Q and for all \bar{a} there exists x such that $G(\bar{a}, x)=0$, is representable in Q.

Assume G is represented in Q by $\varphi\left(x_{1}, \ldots, x_{n}, x, y\right)$. Let

$$
\psi\left(x_{1}, \ldots, x_{n}, x\right) \equiv \varphi_{0}^{y} \wedge \forall z\left(z<x \rightarrow \neg \varphi_{0 z}^{y x}\right)
$$

Let $F(\bar{a})=b$ and $k_{i}=G(\bar{a}, i)$ for $i \in \omega$. Then

$$
Q \vdash \varphi\left(\underline{a_{1}}, \ldots, \underline{a_{n}}, \underline{i}, y\right) \longleftrightarrow y=\underline{k_{i}},
$$

thus

$$
Q \vdash \varphi\left(\underline{a_{1}}, \ldots, \underline{a_{n}}, \underline{i}, 0\right) \longleftrightarrow 0=\underline{k_{i}},
$$

. Hence now if $j<b$, so that $k_{j} \neq 0$, then

$$
Q \vdash \neg \varphi\left(\underline{a_{1}}, \ldots, \underline{a_{n}}, \underline{j}, 0\right)
$$

On the other hand, $k_{b}=0$, so

$$
Q \vdash \varphi\left(\underline{a_{1}}, \ldots, \underline{a_{n}}, \underline{b}, 0\right)
$$

Hence, by Lemma 7,

$$
Q \vdash\left(\varphi(\bar{a}, x, y)_{0}^{y} \wedge \forall z\left(z<x \rightarrow \neg \varphi(\bar{a}, x, y)_{0 z}^{y x}\right)\right) \longleftrightarrow x=\underline{b},
$$

and thus,

$$
Q \vdash \psi(\bar{a}, x) \longleftrightarrow x=\underline{b} .
$$

By generalization, we have that ψ represents F in Q, as desired.

Step 2: Axiomatizable Complete Theories are Decidable

We begin by showing that we may encode terms and formulas of a reasonable language in such a way that important classes of formulas, e.g., the logical axioms, are mapped to recursive subsets of the natural numbers. We use this to derive the main result.

Definition. Let \mathcal{L} be a countable language with subsets \mathcal{C}, \mathcal{F}, and \mathcal{P} of constant, function, and predicate symbols, respectively $(=\in \mathcal{P})$. Let \mathcal{V} be a set of variables for $\mathcal{L} . \mathcal{L}$ is called reasonable if the following two functions exist:

- $h: \mathcal{L} \cup\{\neg, \rightarrow, \forall\} \cup \mathcal{V} \rightarrow \omega$ injective such that $\underline{\mathcal{V}}=h(\mathcal{V}), \underline{\mathcal{C}}=h(\mathcal{C}), \underline{\mathcal{F}}=h(\mathcal{F})$, and $\underline{\mathcal{P}}=h(\mathcal{P})$ are all recursive.
- AR $: \omega \rightarrow \omega \backslash\{0\}$ recursive such that $\operatorname{AR}(h(f))=n$ and $\operatorname{AR}(h(P))=n$ for n-ary function and predicate symbols f and P.

For the rest of this note, the language \mathcal{L} is countable and reasonable.
Now we define a coding $\rceil:\{\mathcal{L}$-terms and \mathcal{L}-formulas $\} \rightarrow \omega$ inductively, by

- For $x \in \mathcal{V} \cup \mathcal{C},\lceil x\rceil=<h(x)>$.
- For \mathcal{L}-terms u_{1}, \ldots, u_{n} and n-ary $f \in \mathcal{F}$,

$$
\left\lceil f u_{1} u_{2} \ldots u_{n}\right\rceil=<h(f),\left\lceil u_{1}\right\rceil,\left\lceil u_{2}\right\rceil, \ldots,\left\lceil u_{n}\right\rceil>.
$$

- For \mathcal{L}-terms t_{1}, \ldots, t_{n} and $P \in \mathcal{P}$,

$$
\left\lceil P t_{1} t_{2} \ldots t_{n}\right\rceil=<h(P),\left\lceil t_{1}\right\rceil, \ldots,\left\lceil t_{n}\right\rceil>.
$$

- For \mathcal{L}-formulas φ and ψ,

$$
\begin{aligned}
\lceil\varphi \rightarrow \psi\rceil & =<h(\rightarrow),\lceil\varphi\rceil,\lceil\psi\rceil>, \\
\lceil\neg \varphi\rceil & =<h(\neg),\lceil\varphi\rceil>, \\
\lceil\forall x \varphi\rceil & =<h(\forall),\lceil x\rceil,\lceil\varphi\rceil>.
\end{aligned}
$$

Note that our definition of \rceil is one-to-one. Given a term or formula σ, we call $\lceil\sigma\rceil$ the Gödel number of σ.

We show the following predicates and functions are recursive (We follow definitions for syntax in [E].):
(1) Vble $=\{\lceil v\rceil \mid v \in \mathcal{V}\} \subset \omega$ and Const $=\{\lceil c\rceil \mid c \in \mathcal{C}\} \subset \omega$.

Proof. Note

$$
\begin{aligned}
\operatorname{Vble}(x) \text { iff } x & =<(x)_{1}>\wedge \underline{\mathcal{V}}\left((x)_{1}\right) \\
\operatorname{Const}(x) \text { iff } x & =<(x)_{1}>\wedge \underline{\mathcal{C}}\left((x)_{1}\right)
\end{aligned}
$$

(2) $\operatorname{Term}=\{\lceil t\rceil \mid t$ an \mathcal{L}-term $\} \subset \omega$.

Proof. Note
$\operatorname{Term}(a)$ iff $\left\{\begin{array}{lc}\forall j<(\operatorname{lh}(a) \dot{-} 1) \operatorname{Term}\left((a)_{j+2}\right) & \text { if } \operatorname{Seq}(a) \wedge \mathcal{F}\left((a)_{1}\right) \\ \operatorname{Vble}(a) \vee \operatorname{Const}(a) & \wedge \operatorname{AR}\left((a)_{1}\right)=\operatorname{lh}(a) \dot{-} 1,\end{array}\right.$
(3) $A t F=\{\lceil\sigma\rceil \mid \sigma$ an atomic \mathcal{L}-formula $\} \subset \omega$.

Proof. Note

$$
\begin{aligned}
\operatorname{AtF}(a) \text { iff } \operatorname{Seq}(a) & \wedge \underline{\mathcal{P}}\left((a)_{1}\right) \wedge\left(\operatorname{AR}\left((a)_{1}\right)=\operatorname{lh}(a) \dot{-} 1\right) \\
& \wedge \forall j<(\operatorname{lh}(a) \dot{-} 1)\left(\operatorname{Term}\left((a)_{j+2}\right)\right) .
\end{aligned}
$$

(4) Form $=\{\lceil\varphi\rceil \mid \varphi$ an \mathcal{L}-formula $\} \subset \omega$.

Proof. Note
$\operatorname{Form}(a)$ iff $\begin{cases}\operatorname{Form}\left((a)_{2}\right) & \text { if } a=<h(\neg),(a)_{2}>, \\ \operatorname{Form}\left((a)_{2}\right) \wedge \operatorname{Form}\left((a)_{3}\right) & \text { if } a=<h(\rightarrow),(a)_{2},(a)_{3}>, \\ \operatorname{Vble}\left((a)_{2}\right) \wedge \operatorname{Form}\left((a)_{3}\right) & \text { if } a=<h(\forall),(a)_{2},(a)_{3}>, \\ \operatorname{AtF}(a) & \text { otherwise. }\end{cases}$
(5) $S u b: \omega^{3} \rightarrow \omega$, such that $\operatorname{Sub}(\lceil t\rceil,\lceil x\rceil,\lceil u\rceil)=\left\lceil t_{u}^{x}\right\rceil$ and $\operatorname{Sub}(\lceil\varphi\rceil,\lceil x\rceil,\lceil u\rceil)=$ $\left\lceil\varphi_{u}^{x}\right\rceil$ for terms t and u, variable x, and formula φ.

Proof. Define
$\operatorname{Sub}(a, b, c)=\left\{\begin{array}{lc}c & \text { if } \operatorname{Vble}(a) \wedge a=b, \\ <(a)_{1}, \operatorname{Sub}\left((a)_{2}, b, c\right), \ldots & \text { if } \operatorname{lh}(a)>1 \wedge(a)_{1} \neq h(\forall) \\ \ldots, \operatorname{Sub}\left((a)_{\operatorname{lh}(a)}, b, c\right)> & \wedge \operatorname{Seq}(a), \\ <(a)_{1},(a)_{2}, \operatorname{Sub}\left((a)_{3}, b, c\right)> & \text { if } a=<h(\forall),(a)_{2},(a)_{3}>, \\ & \wedge(a)_{2} \neq b \\ a & \text { otherwise. }\end{array}\right.$
Note that, if well-defined, the function has the properties desired above.
We show $S u b$ is well-defined by induction on $a: a=0$ falls into the first or last category since $\operatorname{lh}(0)=0$, hence $\operatorname{Sub}(0, b, c)$ is well-defined for all $b, c \in \omega$. If $a \neq 0$, then $(a)_{i}<a$ for all $i \leq \operatorname{lh}(a)$, and thus we may assume the values $\operatorname{Sub}\left((a)_{i}, b, c\right)$ are well-defined, showing $S u b(a, b, c)$ to be well-defined in all cases.
(6) Free $\subset \omega^{2}$, such that for formula φ, term τ, and variable x, $\operatorname{Free}(\lceil\varphi\rceil,\lceil x\rceil)$ if and only if x occurs free in φ, and $\operatorname{Free}(\lceil\tau\rceil,\lceil x\rceil)$ if and only if x occurs in τ

Proof. Define
$\operatorname{Free}(a, b)$ iff $\begin{cases}\exists j<(\operatorname{lh}(a)-1)\left(\operatorname{Free}\left((a)_{j+2}, b\right)\right) & \text { if } \operatorname{lh}(a)>1 \wedge(a)_{1} \neq h(\forall), \\ \operatorname{Free}\left((a)_{3}, b\right) \wedge(a)_{2} \neq b & \text { if } \operatorname{lh}(a)>1 \wedge(a)_{1}=h(\forall), \\ a=b & \text { otherwise. }\end{cases}$
Free clearly has the desired property, and that it is well-defined follows by essentially the same induction on a as above.
(7) Sent $=\{\lceil\varphi\rceil \mid \varphi$ is an \mathcal{L}-sentence $\} \subset \omega$.

Proof. Note
$\operatorname{Sent}(a)$ iff $\operatorname{Form}(a) \wedge \forall b<a(\neg \operatorname{Vble}(b) \vee \neg \operatorname{Free}(a, b))$.
(8) $\operatorname{Subst}(a, b, c) \subset \omega^{3}$ such that for a given formula φ, variable x, and term t, $\operatorname{Subst}(\lceil\varphi\rceil,\lceil x\rceil,\lceil t\rceil)$ if and only if t is substitutable for x in φ.

Proof. Define
$\operatorname{Subst}(a, b, c)$ iff $\begin{cases}\operatorname{Subst}\left((a)_{2}, b, c\right) & \text { if } a=<h(\neg),(a)_{2}>, \\ \operatorname{Subst}\left((a)_{2}, b, c\right) \wedge \operatorname{Subst}\left((a)_{3}, b, c\right) & \text { if } a=<h(\rightarrow),(a)_{2},(a)_{3}>, \\ \neg \operatorname{Free}(a, b) \vee\left(\neg \operatorname{Free}\left(c,(a)_{2}\right)\right. & \text { if } a=<h(\forall),(a)_{2},(a)_{3}>, \\ \left.\wedge \wedge \operatorname{Subst}\left((a)_{3}, b, c\right)\right) & \\ 0=0 \quad & \text { otherwise. }\end{cases}$
Note that Subst has the desired property, and is well-defined by essentially the same induction used above.
(9) We define
$\operatorname{False}(a, b)$ iff $\begin{cases}\neg \operatorname{False}\left((a)_{2}, b\right) \wedge \operatorname{False}\left((a)_{3}, b\right) & \text { if } a=<h(\rightarrow),(a)_{2},(a)_{3}> \\ & \wedge \operatorname{Form}\left((a)_{2}\right) \wedge \operatorname{Form}\left((a)_{3}\right), \\ \neg \operatorname{False}\left((a)_{2}, b\right) & \text { if } a=<h(\neg),(a)_{2}>\wedge \operatorname{Form}\left((a)_{2}\right), \\ \operatorname{Form}(a) \wedge(b)_{a}=0 & \text { otherwise. }\end{cases}$
False is recursive by the same induction as applied above. We note the significance of False presently.
To each $b \in \omega$, we may associate a truth assignment v_{b} such that for a prime formula ψ (atomic or of the form $\forall x \varphi$),

$$
v_{b}(\psi)=\mathrm{F} \text { iff }(b)_{\lceil\psi\rceil}=0 .
$$

Further, for any truth assignment $v: A \rightarrow\{\mathrm{~T}, \mathrm{~F}\}$, where A is a finite set of prime formulas, there exists a b such that $v=v_{b}$: we may write $A=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$ such that $\left\lceil\varphi_{1}\right\rceil<\left\lceil\varphi_{2}\right\rceil<\cdots<\left\lceil\varphi_{n}\right\rceil$. For $1 \leq j \leq\left\lceil\varphi_{n}\right\rceil$ define $c_{j}=0$ when $j=\left\lceil\varphi_{i}\right\rceil$ for some $i \leq n$ and $v\left(\varphi_{i}\right)=F$, and $c_{j}=1$ otherwise. Then $b=\left\langle c_{1}, \ldots, c_{\left\lceil\varphi_{n}\right\rceil}\right\rangle$ satisfies $v_{b}=v$ on A.

Then moreover, for any formula φ built up from A,

$$
\bar{v}(\varphi)=\mathrm{F} \quad \text { iff } \overline{v_{b}}(\varphi)=\mathrm{F} \quad \text { iff } \operatorname{False}(\lceil\varphi\rceil, b) .
$$

(10) Define Taut $=\{\lceil\sigma\rceil \mid \sigma$ is a tautology $\} \subset \omega$.

Proof. Recall $b d: \omega \rightarrow \omega$ such that $b d(a)=\max \left\{<c_{1}, \ldots, c_{a}\right\rangle \mid c_{i} \in$ $\{0,1\}\}$, recursive, has been previously defined. Define

$$
\operatorname{Taut}(a) \text { iff } \operatorname{Form}(a) \wedge \forall b<(b d(a)+1)(\neg \operatorname{False}(a, b)) .
$$

(11) $\underline{\mathrm{AG} 2}=\{\lceil\varphi\rceil \mid \varphi$ is in axiom group 2$\} \subset \omega$.

Proof. Recall axiom group 2 contains formulas of the form $\forall x \psi \rightarrow \psi_{t}^{x}$, with term t substitutable for x in ψ. Thus

$$
\begin{aligned}
\underline{\operatorname{AG2}}(a) \operatorname{iff} \exists x, y, z<a(\operatorname{Vble}(x) \wedge & \operatorname{Form}(y) \wedge \operatorname{Term}(z) \wedge \operatorname{Subst}(y, x, z) \\
& \wedge a=<h(\rightarrow),<h(\forall), x, y>, \operatorname{Sub}(y, x, z)>)
\end{aligned}
$$

where $\exists x, y, z<a P(x, y, z)$ abbreviates what one would expect.
(12) $\underline{\mathrm{AG} 3}=\{\lceil\varphi\rceil \mid \varphi$ is in axiom group 3$\} \subset \omega$.

Proof. Recall we take axiom group 3 to be the formulas having the following form: $\forall x\left(\psi \rightarrow \psi^{\prime}\right) \rightarrow\left(\forall x \psi \rightarrow \forall x \psi^{\prime}\right)$. Thus

$$
\begin{aligned}
& \text { AG3(a) iff } \exists x, y, z<a(\operatorname{Vble}(x) \wedge \operatorname{Form}(y) \wedge \operatorname{Form}(z) \\
& \qquad a=<h(\rightarrow),<h(\forall), x,<h(\rightarrow), y, z \gg, \\
& <h(\rightarrow),<h(\forall), x, y>,<h(\forall), x, z \ggg)
\end{aligned}
$$

(13) $\underline{\mathrm{AG} 4}=\{\lceil\varphi\rceil \mid \varphi$ is in axiom group 4$\} \subset \omega$.

Proof. Recall axiom group 4 contains formulas of the form $\psi \rightarrow \forall x \psi$, where x does not occur free in ψ. Thus
$\underline{\operatorname{AG4}}(a)$ iff $\exists x, y<a(\operatorname{Vble}(x) \wedge \operatorname{Form}(y)$

$$
\wedge \neg \operatorname{Free}(y, x) \wedge a=<h(\rightarrow), y,<h(\forall), x, y \gg)
$$

(14) $\underline{\text { AG5 }}=\{\lceil\varphi\rceil \mid \varphi$ is in axiom group 5$\} \subset \omega$.

Proof. Recall axiom group 5 contains formulas of the form $x=x$, for a variable x , hence

$$
\underline{\text { AG5 }}(a) \text { iff } \exists x<a(\operatorname{Vble}(x) \wedge a=<h(=), x, x>) .
$$

(15) $\underline{\text { AG6 }}=\{\lceil\varphi\rceil \mid \varphi$ is in axiom group 6$\} \subset \omega$.

Proof. Recall formulas of axiom group 6 have the form $x=y \rightarrow\left(\psi \rightarrow \psi^{\prime}\right)$, where ψ is an atomic formula and ψ^{\prime} is obtained by from ψ by replacing one or more occurrences of x with y. Thus

AG6 (a) iff $\exists x, y, b, c<a(\operatorname{Vble}(x) \wedge \operatorname{Vble}(y) \wedge \operatorname{AtF}(b) \wedge \operatorname{AtF}(c)$

$$
\begin{aligned}
\wedge \operatorname{lh}(b)=\operatorname{lh}(c) \wedge \forall j<\operatorname{lh}(b) & +1\left((c)_{j}=(b)_{j} \vee\left((c)_{j}=y \wedge(b)_{j}=x\right)\right) \\
& \wedge a=<h(\rightarrow),<h(=), x, y>,<h(\rightarrow), b, c \gg)
\end{aligned}
$$

(16) $\operatorname{Gen}(a, b) \subset \omega^{2}$, such that $G e n(\lceil\varphi\rceil,\lceil\psi\rceil)$ if and only if φ is a generalization of ψ (i.e., $\varphi=\forall x_{1} \ldots \forall x_{n} \psi$ for some finite $\left\{x_{i}\right\} \subset \mathcal{V}$).

Proof. Note that
$\operatorname{Gen}(a, b)$ iff $\begin{cases}a=<h(\forall),(a)_{2},(a)_{3}>\wedge \operatorname{Vble}\left((a)_{2}\right) \wedge \operatorname{Gen}\left((a)_{3}, b\right) & \text { if } a>b, \\ 0=0 & \text { if } a=b, \\ 0=1 & \text { if } a<b .\end{cases}$
(17) $\underline{\Lambda}=\{\lceil\sigma\rceil \mid \sigma \in \Lambda\} \subset \omega$, where Λ is the set of logical axioms.

Proof. Note that
$\underline{\Lambda}(a)$ iff $\exists b<a+1(\operatorname{Form}(a) \wedge \operatorname{Gen}(a, b)$

$$
\wedge(\operatorname{Taut}(b) \vee \underline{\operatorname{AG} 2}(b) \vee \underline{\mathrm{AG}}(b) \vee \underline{\mathrm{AG} 4}(b) \vee \underline{\mathrm{AG} 5}(b) \vee \underline{\mathrm{AG} 6}(b)))
$$

We have, to this point, defined three codings: $<>$ on sequences of natural numbers, h on the language and logical symbols, and \rceil on the terms and formulas. We presently define a fourth coding, of sequences of formulas:

$$
\llbracket \rrbracket:\{\text { sequences of } \mathcal{L} \text {-formulas }\} \rightarrow \omega,
$$

given by

$$
\left.\llbracket \varphi_{1}, \ldots, \varphi_{n}\right\rceil=<\left\lceil\varphi_{1}\right\rceil, \ldots,\left\lceil\varphi_{n}\right\rceil>
$$

This map is one-to-one, as it is derived from the established (injective) codings, and in particular, we can determine, for a given number, if it lies in the image of $\llbracket \rrbracket$, and, if so, recover the associated sequence of formulas.

Definition. Given \mathcal{L}, let T be a theory (a collection of sentences) in \mathcal{L}. Define

$$
\underline{T}=\{\lceil\sigma\rceil \mid \sigma \in T\} .
$$

We say that T is axiomatizable if there exists a theory S, axiomatizing T (that is, such that $\operatorname{Cn} S=\operatorname{Cn} T$), such that \underline{S} is recursive. We say that T is decidable if $\underline{\mathrm{Cn} T}$ is recursive.

We shall make use of the following relations:

- $\operatorname{Ded}_{T}=\left\{\llbracket \varphi_{1}, \ldots, \varphi_{n} \rrbracket \mid \varphi_{1}, \ldots, \varphi_{n}\right.$ is a deduction from $\left.T\right\} \subset \omega$. Note that
$\operatorname{Ded}_{T}(a)$ iff $\operatorname{Seq}(a) \wedge \operatorname{lh}(a) \neq 0$
$\wedge \forall j<\operatorname{lh}(a)\left(\underline{\Lambda}\left((a)_{j+1}\right) \vee \underline{T}\left((a)_{j+1}\right) \vee \exists i, k<j+1\left((a)_{k+1}=<h(\rightarrow),(a)_{i+1},(a)_{j+1}>\right)\right)$
- $\operatorname{Prf}_{T} \subset \omega^{2}$, given by $\operatorname{Prf}_{T}(a, b)$ iff $\operatorname{Ded}_{T}(b) \wedge a=(b)_{\ln (b)}$.
- $P f_{T} \subset \omega$, given by $P f_{T}(a)$ iff $\operatorname{Sent}(a) \wedge \exists x \operatorname{Pr} f_{T}(a, x)$.

Note that we may read $\operatorname{Pr} f_{T}(a, b)$ as " b is a proof of a from T," and $P f_{T}(a)$ as " a is a sentence provable from T." In particular

$$
P f_{T}=\underline{\operatorname{Cn} T}=\{\lceil\sigma\rceil \mid T \vdash \sigma\} .
$$

We use this fact to prove the following:
Theorem. If T is axiomatizable, then $P f_{T}=\underline{\mathrm{Cn} T}$ is recursively enumerable.
Proof. Let S axiomatize T, where S is recursive. From the above definitions, we see that Ded_{S} and Prf_{S} are recursive relations, hence $P f_{S}$ is an r.e. relation. But $P f_{S}=P f_{T}$, since Cn $S=\operatorname{Cn} T$.

Theorem. If T is axiomatizable and complete in \mathcal{L}, then T is decidable.
Proof. By the negation theorem, it suffices to show that $\neg P f_{T}$ is recursively enumerable. Note that since T is complete, for any sentence $\sigma, T \nvdash \sigma$ if and only if $T \vdash \neg \sigma$. Hence

$$
\begin{aligned}
& \neg P f_{T}(a) \text { iff } \neg \operatorname{Sent}(a) \vee \exists m \operatorname{Prf}_{T}(<h(\neg), a>, m) \\
& \text { iff } \exists m\left(\neg \operatorname{Sent}(a) \vee \operatorname{Prf}_{T}(<h(\neg), a>, m)\right) .
\end{aligned}
$$

Thus $\neg P f_{T}$ is recursively enumerable, and $P f_{T}$ is recursive.
We can see that if we say T is axiomatizable in wider sense when S axiomatizing T is recursively enumerable, then the above two theorems still hold with this seemingly weaker notion. In fact, two notions are equivalent, which is known as Craig's Theorem.

Step 3: The Incompleteness Theorems and Other Results

We return now to the language of natural numbers, $\mathcal{L}_{\mathcal{N}}$. Recall that we define, for a natural number n,

$$
\underline{n} \equiv \underbrace{S S \ldots S}_{n} 0 .
$$

Definition. The diagonalization of an $\mathcal{L}_{\mathcal{N}}$ formula φ is a new formula

$$
d(\varphi) \equiv \exists v_{0}\left(v_{0}=\underline{\lceil\varphi\rceil} \wedge \varphi\right),
$$

where \exists and \wedge provide the usual abbreviations in $\mathcal{L}_{\mathcal{N}}$.
In particular, we note $d(\varphi)$ is satisfiable precisely when φ is satisfiable by some truth assignment taking v_{0} to the Gödel number of φ, and $\mathcal{L}_{\mathcal{N}}=d(\varphi)$ precisely when φ is satisfied by every truth assignment taking v_{0} to $\lceil\varphi\rceil$.

Lemma. There exists a recursive function $d g: \omega \rightarrow \omega$ such that for any $\mathcal{L}_{\mathcal{N}}$ formula, $d g(\lceil\varphi\rceil)=\lceil d(\varphi)\rceil$.

Proof. Define num : $\omega \rightarrow \omega$ by num $(0)=<0>$ and, for $n \in \omega$

$$
\operatorname{num}(n+1)=<h(S), \operatorname{num}(n)>.
$$

In particular, note that $\operatorname{num}(n)=\lceil\underline{n}\rceil$.
Define

$$
\begin{aligned}
d g(a)=<h(\neg),< & h(\forall),\left\lceil v_{0}\right\rceil,<h(\neg) \\
& <h(\neg),<h(\rightarrow),<h(=),\left\lceil v_{0}\right\rceil, \operatorname{num}(a)>,<h(\neg), a \ggg \ggg
\end{aligned}
$$

Then

$$
\begin{aligned}
d g(\lceil\varphi\rceil)=< & h(\neg),<h(\forall),\left\lceil v_{0}\right\rceil,<h(\neg), \\
& <h(\neg),<h(\rightarrow),<h(=),\left\lceil v_{0}\right\rceil, \operatorname{num}(\lceil\varphi\rceil)>,<h(\neg),\lceil\varphi\rceil \ggg \ggg, \\
=< & h(\neg),<h(\forall),\left\lceil v_{0}\right\rceil,<h(\neg), \\
& <h(\neg),<h(\rightarrow),<h(=),\left\lceil v_{0}\right\rceil,\lceil\lceil\varphi\rceil\rceil>,<h(\neg),\lceil\varphi\rceil \ggg \ggg>.
\end{aligned}
$$

However, writing out what formula this encodes and introducing our usual abbreviations, we have

$$
\begin{aligned}
d g(\lceil\varphi\rceil) & =\left\lceil\neg \forall v_{0} \neg\left(\neg\left(v_{0}=\lceil\varphi\rceil \rightarrow \neg \varphi\right)\right)\right\rceil \\
& =\left\lceil\exists v_{0}\left(v_{0}=\underline{\lceil\varphi\rceil} \wedge \varphi\right)\right\rceil \\
& =\lceil d(\varphi)\rceil,
\end{aligned}
$$

as desired.
Fixed Point Theorem (Gödel). For any $\mathcal{L}_{\mathcal{N}-\text {-formula }} \varphi(x)$ (i.e., either a sentence or a formula having x as the only free variable), there is some $\mathcal{L}_{\mathcal{N}}$-sentence σ such that

$$
Q \vdash \sigma \longleftrightarrow \varphi(\underline{\lceil\sigma\rceil}) .
$$

Proof. Since $d g$ is recursive, it is representable in Q by Step 1 , say by $\psi(x, y)$. Then

$$
Q \vdash \forall y(\psi(\underline{n}, y) \longleftrightarrow y=\underline{d g(n)}) .
$$

Let $\delta\left(v_{0}\right) \equiv \exists y\left(\psi\left(v_{0}, y\right) \wedge \varphi(y)\right)$, and let $n=\left\lceil\delta\left(v_{0}\right)\right\rceil$. Define

$$
\sigma \equiv d\left(\delta\left(v_{0}\right)\right) \equiv \exists v_{0}\left(v_{0}=\underline{n} \wedge \delta\left(v_{0}\right)\right)
$$

Then if we let $k=d g(n)=\lceil\sigma\rceil$, we have

$$
\vDash \sigma \longleftrightarrow \delta(\underline{n}) \longleftrightarrow \exists y(\psi(\underline{n}, y) \wedge \varphi(y))
$$

But

$$
Q \vdash \psi(\underline{n}, y) \longleftrightarrow y=\underline{k},
$$

and therefore

$$
Q \vdash \sigma \longleftrightarrow \exists y(y=\underline{k} \wedge \varphi(y)) \longleftrightarrow \varphi(\underline{k}) \longleftrightarrow \varphi(\underline{\lceil\sigma\rceil}),
$$

as required.

Tarski Undefinability Theorem. $\underline{\operatorname{Th} \mathcal{N}}=\{\lceil\sigma\rceil|\mathcal{N}|=\sigma\}$ is not definable.
Proof. Suppose $\underline{\operatorname{Th} \mathcal{N}}$ were definable by $\beta(x)$. Then by the fixed point lemma, with $\varphi=\neg \beta$, there exists a sentence σ such that

$$
\mathcal{N} \models \sigma \longleftrightarrow \neg \beta(\lceil\sigma\rceil) .
$$

Then $\mathcal{N} \models \sigma$ implies that $\mathcal{N} \not \models \beta(\lceil\sigma\rceil)$, implying $\mathcal{N} \not \models \sigma$, or $\mathcal{N} \models \neg \sigma$, since $\operatorname{Th} \mathcal{N}$ is complete. On the other hand, $\overline{\mathcal{N}} \nLeftarrow \sigma$ implies $\mathcal{N} \models \neg \sigma$, and thus that $\mathcal{N} \models$ $\beta(\lceil\sigma\rceil)$, implying $\mathcal{N} \models \sigma$. The contradictions together imply that β cannot represent Th \mathcal{N}.

Strong Undecidability of \mathbf{Q}. Let T be a theory in $\mathcal{L} \supset \mathcal{L}_{\mathcal{N}}$. If $T \cup Q$ is consistent in \mathcal{L}, then T is not decidable in \mathcal{L} ($\underline{\mathrm{Cn} T}$ is not recursive).

Proof. Assume that $\mathrm{Cn} T$ is recursive. We first show that this implies recursiveness of $\operatorname{Cn}(T \cup Q)$. Since Q is finite, it suffices to show that for any sentence τ in the language, $\operatorname{Cn}(T \cup\{\tau\})$ is recursive.

In particular, note that $\alpha \in \operatorname{Cn}(T \cup\{\tau\})$ iff $\tau \rightarrow \alpha \in \operatorname{Cn} T$. Thus

$$
a \in \underline{\operatorname{Cn}(T \cup\{\tau\})} \text { iff } \operatorname{Sent}(a) \wedge<h(\rightarrow),\lceil\tau\rceil, a>\in \underline{\operatorname{Cn} T} .
$$

Hence $\operatorname{Cn}(T \cup\{\tau\})$ is recursive, as desired.
To prove the theorem, then, it suffices to show that $\operatorname{Cn}(T \cup Q)$ is not recursive. If this were the case, then it would be representable, say by $\beta(x)$, in Q. By the fixed point lemma, there exists an $\mathcal{L}_{\mathcal{N}}$ sentence σ such that

$$
Q \vdash \sigma \longleftrightarrow \neg \beta(\underline{\lceil\sigma\rceil}) .
$$

If $T \cup Q \vdash \sigma$, then

$$
Q \vdash \beta(\underline{\lceil\sigma\rceil}),
$$

by the representability of $\underline{\operatorname{Cn}(T \cup Q)}$ by $\beta(x)$ in Q. In particular,

$$
Q \vdash \neg \sigma,
$$

a contradiction. On the other hand, if $T \cup Q \nvdash \sigma$, then by representability,

$$
Q \vdash \neg \beta(\underline{\lceil\sigma\rceil}),
$$

and hence

$$
Q \vdash \sigma,
$$

a contradiction, implying that $\underline{\mathrm{Cn}(T \cup Q)}$ is not representable, and hence not recursive.

Corollary. Th $\mathcal{N}, P A$, and Q are all undecidable.
Proof. We need note only that each of these theories is consistent with Q.
Moreover, we have:

Undecidability of First Order Logic (Church). For a reasonable countable language $\mathcal{L} \supset \mathcal{L}_{\mathcal{N}}$, the set of all Gödel numbers of valid sentences $(\{\lceil\sigma\rceil \mid \emptyset \vdash \sigma\})$ is not recursive (the set of valid sentences is not decidable).

In fact, the above corollary is true for any countable \mathcal{L} containing a k-ary predicate or function symbol, $k \geq 2$, or at least two unary function symbols.

Gödel-Rosser First Incompleteness Theorem. If T is a theory in a countable reasonable $\mathcal{L} \supset \mathcal{L}_{\mathcal{N}}$, with $T \cup Q$ consistent and T axiomatizable, then T is not complete.
Proof. By Step 2, if T is complete, then T is decidable, contradicting the strong undecidability of Q.

Remarks. In $(\mathcal{N},+), 0,<$, and S are definable. Hence the same result follows if we take $\mathcal{L}_{\mathcal{N}}^{\prime}=\{+, \cdot\}$ instead of our usual $\mathcal{L}_{\mathcal{N}}$. In particular, $\operatorname{Th}(\mathcal{N},+, \cdot)$ is undecidable, and for any $T^{\prime} \supset Q^{\prime}$ (where Q^{\prime} is simply Q written in the language of $\mathcal{L}_{\mathcal{N}}^{\prime}$), we have that T^{\prime} is, if consistent, undecidable, and, if axiomatizable, incomplete.

It is important to note that for an undecidable theory T, we may have $T \subset T^{\prime}$, where T^{\prime} is a decidable theory. As an example, the theory of groups is undecidable, whereas the theory of divisible torsion-free groups is decidable.

We turn our attention now to the proof of the result used in Gödel's original paper. In particular, Gödel worked in the model $(\mathcal{N},+, \cdot, 0,<, E)$. (Note that E, exponentiation, is definable in $(\mathcal{N},+, \cdot, 0,<)$, or, equivalently, $(\mathcal{N},+, \cdot))$.

Let $T \supset Q$ be a consistent theory in a reasonable countable language $\mathcal{L} \supset \mathcal{L}_{\mathcal{N}}$, and presume that \underline{T} is recursive. Then

$$
T \vdash \sigma \Rightarrow Q \vdash P f_{T}(\underline{(\lceil \rceil)}) .
$$

In particular, $T \vdash \sigma$ implies that $\operatorname{Prf}_{T}(\lceil\sigma\rceil, m)$ for some $m \in \omega$. Since Prf_{T} is recursive, it is representable in Q, hence $Q \vdash \operatorname{Prf}_{T}(\lceil\overline{\lceil\sigma}, \underline{m})$, and

$$
Q \vdash \exists x \operatorname{Prf}_{T}(\underline{\lceil\sigma\rceil}, x),
$$

or

$$
Q \vdash P f_{T}(\underline{\lceil\sigma\rceil}) .
$$

By the fixed point lemma, there exists a sentence α such that

$$
\begin{equation*}
T \supset Q \vdash \alpha \longleftrightarrow \neg P f_{T}(\underline{\lceil\alpha\rceil}) . \tag{*}
\end{equation*}
$$

If $T \vdash \alpha$, then $Q \vdash P f_{T}(\underline{(\lceil \rceil})$, and thus $Q \vdash \neg \alpha$, and hence $T \vdash \neg \alpha$, a contradiction. Thus $T \nvdash \alpha$.

On the other hand, if T is ω-consistent (i.e., whenever $T \vdash \exists x \varphi(x)$, then for some $n \in \omega, T \nvdash \neg \varphi(\underline{n}))$, then $T \nvdash \neg \alpha$. In particular, if $T \vdash \neg \alpha$, then

$$
T \vdash P f_{T}(\underline{\lceil\alpha\rceil}),
$$

by (*). That is,

$$
T \vdash \exists x \operatorname{Prf}_{T}(\underline{\lceil\alpha\rceil}, x) .
$$

However, if $\operatorname{Prf}_{T}(\underline{(\lceil \rceil}, m)$ for some $m \in \omega$, then $T \vdash \alpha$, contradicting the consistency of T. Thus we must have $\neg \operatorname{Pr} f_{T}(\underline{\lceil\alpha\rceil}, m)$ for all $m \in \omega$. Since Q represents Prf_{T},

$$
T \supset Q \vdash \neg \operatorname{Prf}_{T}(\underline{(\lceil \rceil\rceil}, m)
$$

for all $m \in \omega$, contradicting the ω-consistency of T.
Rosser generalized Gödel's proof by singling out for T a sentence α such that $T \nvdash \alpha$ and $T \nvdash \neg \alpha$, without the assumption of ω-consistency.

We now begin our approach to Gödel's Second Incompleteness Theorem. We fix T, a theory in a countable reasonable language $\mathcal{L} \supset \mathcal{L}_{\mathcal{N}}$.

We note the following fact from Hilbert and Bernays' Grundlagen der Mathematik, 1934.

Fact. If T is consistent, $T \vdash P A$, and \underline{T} is recursive, then for any sentences σ and δ in \mathcal{L},

$$
\begin{aligned}
\text { I. } & T \vdash \sigma \Rightarrow Q \vdash P f_{T}(\underline{\lceil\sigma\rceil}) \\
\text { II. } & P A \vdash\left(P f_{T}(\underline{(\lceil \rceil\rceil}) \wedge P f_{T}(\underline{\lceil\sigma \rightarrow \delta\rceil)}) \rightarrow P f_{T}(\underline{(\lceil \rceil)})\right. \\
\text { III. } & P A \vdash P f_{T}(\underline{\lceil\sigma\rceil}) \rightarrow P f_{T}\left(\underline{\left\lceil P f_{T}(\underline{(\lceil \rceil]})\right\rceil}\right)
\end{aligned}
$$

Notation. We will write $\operatorname{Con}_{T} \equiv \neg P f_{T}(\lceil 0 \neq 0\rceil)$. Clearly Con_{T} holds if and only if T is consistent.
Lemma. If $T \vdash \sigma \rightarrow \delta$, then $P A \vdash P f_{T}(\underline{\lceil\sigma\rceil}) \rightarrow P f_{T}(\underline{\lceil\delta\rceil})$.
Proof. If $T \vdash \sigma \rightarrow \delta$, then by (I) above,

$$
P A \vdash P f_{T}(\underline{\lceil\sigma \rightarrow \delta\rceil}),
$$

and by (II),

$$
P A \vdash P f_{T}(\underline{\lceil\sigma\rceil}) \rightarrow P f_{T}(\underline{\lceil\delta\rceil}) .
$$

Gödel's Second Incompleteness Theorem. If T is consistent, \underline{T} is recursive, and $T \vdash P A$, then $T \nvdash C o n_{T}$.
Proof. By the fixed point lemma, there exists σ such that

$$
Q \vdash \sigma \longleftrightarrow \neg P f_{T}(\underline{\lceil\sigma\rceil}) .
$$

By (III), above,

$$
P A \vdash P f_{T}(\underline{\lceil\sigma\rceil}) \rightarrow P f_{T}\left(\underline{\left\lceil P f_{T}(\underline{\lceil\sigma\rceil})\right\rceil}\right) .
$$

And further, by Lemma, we have

$$
P A \vdash P f_{T}\left(\underline{\left\lceil P f_{T}(\underline{\lceil\sigma\rceil)})\right.}\right) \rightarrow P f_{T}(\underline{\lceil\neg \sigma\rceil}) .
$$

Combining this result with (\ddagger), we have

$$
P A \vdash P f_{T}(\underline{\lceil\sigma\rceil}) \rightarrow P f_{T}(\underline{\lceil\neg \sigma\rceil}) .
$$

Now note that $\vdash \neg \sigma \longleftrightarrow(\sigma \rightarrow(0 \neq 0))$. By the lemma,

$$
P A \vdash P f_{T}(\underline{(\lceil \rceil\rceil}) \rightarrow P f_{T}(\underline{\lceil\sigma \rightarrow(0 \neq 0)\rceil)} .
$$

In particular,

$$
P A \vdash P f_{T}(\underline{\lceil\sigma\rceil}) \rightarrow P f_{T}(\underline{\lceil\sigma\rceil}) \wedge P f_{T}(\underline{\lceil\sigma \rightarrow(0 \neq 0)\rceil)},
$$

hence, by (II),

$$
P A \vdash P f_{T}(\underline{\lceil\sigma\rceil}) \rightarrow P f_{T}(\underline{\lceil 0 \neq 0\rceil}),
$$

i.e.

$$
P A \vdash P f_{T}(\underline{\lceil\sigma\rceil}) \rightarrow \neg \text { Con }_{T} .
$$

Thus $P A \vdash$ Con $_{T} \rightarrow \sigma$, by (\dagger).
Now, suppose that $T \vdash \mathrm{Con}_{T}$. Then $T \vdash \sigma$, and hence by (I), $T \supset Q \vdash P f_{T}(\underline{\lceil\sigma\rceil)}$. But again, by (\dagger), this implies that $T \vdash \neg \sigma$, a contradiction, showing that T cannot prove its own consistency.

We remark that one may carry the proof through using only the assumption that \underline{T} is recursively enumerable.

Löb's Theorem. Suppose T is a consistent theory in $\mathcal{L} \supset \mathcal{L}_{\mathcal{N}}$, such that \underline{T} recursive, and $T \vdash P A$. Then for any \mathcal{L}-sentence σ, if $T \vdash P f_{T}(\underline{\lceil\sigma\rceil)} \rightarrow \sigma$, then $T \vdash \sigma$.
Proof. By the fixed point lemma, there exists δ such that

$$
Q \vdash \delta \longleftrightarrow\left(P f_{T}(\underline{\lceil\delta\rceil}) \rightarrow \sigma\right)
$$

Since $T \vdash P A \supset Q, T$ proves the same result. From this we may deduce that

$$
P A \vdash P f_{T}(\underline{(\lceil \rceil}) \rightarrow P f_{T}(\underline{\lceil\sigma\rceil}) .
$$

In particular, by our lemma, we have

$$
P A \vdash P f_{T}(\underline{\lceil\delta\rceil}) \rightarrow P f_{T}\left(\underline{\left\lceil f_{T}(\underline{\lceil\delta\rceil}) \rightarrow \sigma\right\rceil}\right)
$$

and, combining this with (III) from above,

$$
P A \vdash P f_{T}(\underline{\lceil\delta\rceil}) \rightarrow P f_{T}\left(\underline{\left\lceil P f_{T}(\underline{\lceil\delta\rceil})\right\rceil}\right) \wedge P f_{T}\left(\underline{\left\lceil P f_{T}(\underline{\lceil\delta\rceil}) \rightarrow \sigma\right\rceil}\right)
$$

and thus, by (II),

$$
P A \vdash P f_{T}(\underline{\lceil\delta\rceil}) \rightarrow P f_{T}(\underline{\lceil\sigma\rceil}),
$$

as desired.
Now assume that $T \vdash P f_{T}(\underline{\lceil\sigma\rceil}) \rightarrow \sigma$. Then, by the above,

$$
T \vdash P f_{T}(\underline{\lceil\delta\rceil}) \rightarrow \sigma .
$$

By our choice of δ, this in turn implies that $T \vdash \delta$. By (I), we have that $Q \vdash$ $P f_{T}(\lceil\delta\rceil)$, and hence T proves the same result, implying that $T \vdash \sigma$, as desired.
Remark. Gödel's Second Incompleteness Theorem in fact follows from Löb's Theorem. In particular, given T as in the hypotheses of both theorems, if $T \vdash \operatorname{Con}_{T}$, then

$$
T \vdash P f_{T}(\underline{\lceil 0 \neq 0\rceil}) \rightarrow 0 \neq 0 .
$$

But by Löb's Theorem, this in turn implies that $T \vdash 0 \neq 0$, showing that such a theory, if consistent, cannot prove its own consistency.

References

[BJ] G. S. Boolos and R. C. Jeffrey, Computability and logic.
[E] H. Enderton, A mathematical introduction to logic.
[Sh] J. R. Shoenfield, Mathematical logic.
[Sm] R. M. Smullyan, Gödel's incompleteness theorems.

[^0]: Proofs in this note are adaptation of those in [Sh] into the deduction system described in [E]. Many thanks to Peter Ahumada and Michael Brewer who wrote up this note.

